Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José Melo-Ferreira is active.

Publication


Featured researches published by José Melo-Ferreira.


Molecular Ecology | 2005

Invasion from the cold past: extensive introgression of mountain hare (Lepus timidus) mitochondrial DNA into three other hare species in northern Iberia

José Melo-Ferreira; Pierre Boursot; Franz Suchentrunk; Nuno Ferrand; Paulo C. Alves

Mitochondrial DNA introgression from Lepus timidus into Lepus granatensis and Lepus europaeus was recently reported in Iberia, although L. timidus presumably retreated from this region at the end of the last ice age. Here we assess the extent of this ancient mtDNA introgression by RFLP analysis of 695 specimens representing the three hare species present in Iberia. The introgressed L. timidus lineage was found in 23 of the 37 populations sampled. It is almost fixed in L. europaeus across its Iberian range in the Pyrenean foothills, and in L. granatensis, which occupies the rest of the peninsula, it is predominant in the north and gradually disappears further south. We also found it in Lepus castroviejoi, a species endemic to Cantabria. Multiple hybridizations and, potentially, a selective advantage for the L. timidus lineage can explain the remarkable taxonomic and geographical range of this mitochondrial introgression.


Molecular Ecology Resources | 2012

Reference-free transcriptome assembly in non-model animals from next-generation sequencing data.

Vincent Cahais; Philippe Gayral; Georgia Tsagkogeorga; José Melo-Ferreira; Marion Ballenghien; Lucy A. Weinert; Ylenia Chiari; Khalid Belkhir; Vincent Ranwez; Nicolas Galtier

Next‐generation sequencing (NGS) technologies offer the opportunity for population genomic study of non‐model organisms sampled in the wild. The transcriptome is a convenient and popular target for such purposes. However, designing genetic markers from NGS transcriptome data requires assembling gene‐coding sequences out of short reads. This is a complex task owing to gene duplications, genetic polymorphism, alternative splicing and transcription noise. Typical assembling programmes return thousands of predicted contigs, whose connection to the species true gene content is unclear, and from which SNP definition is uneasy. Here, the transcriptomes of five diverse non‐model animal species (hare, turtle, ant, oyster and tunicate) were assembled from newly generated 454 and Illumina sequence reads. In two species for which a reference genome is available, a new procedure was introduced to annotate each predicted contig as either a full‐length cDNA, fragment, chimera, allele, paralogue, genomic sequence or other, based on the number of, and overlap between, blast hits to the appropriate reference. Analyses showed that (i) the highest quality assemblies are obtained when 454 and Illumina data are combined, (ii) typical de novo assemblies include a majority of irrelevant cDNA predictions and (iii) assemblies can be appropriately cleaned by filtering contigs based on length and coverage. We conclude that robust, reference‐free assembly of thousands of genes from transcriptomic NGS data is possible, opening promising perspectives for transcriptome‐based population genomics in animals. A Galaxy pipeline implementing our best‐performing assembling strategy is provided.


PLOS Genetics | 2013

Reference-Free Population Genomics from Next-Generation Transcriptome Data and the Vertebrate–Invertebrate Gap

Philippe Gayral; José Melo-Ferreira; Sylvain Glémin; Nicolas Bierne; Miguel Carneiro; Benoit Nabholz; João M. Lourenço; Paulo C. Alves; Marion Ballenghien; Nicolas Faivre; Khalid Belkhir; Vincent Cahais; Etienne Loire; Aurélien Bernard; Nicolas Galtier

In animals, the population genomic literature is dominated by two taxa, namely mammals and drosophilids, in which fully sequenced, well-annotated genomes have been available for years. Data from other metazoan phyla are scarce, probably because the vast majority of living species still lack a closely related reference genome. Here we achieve de novo, reference-free population genomic analysis from wild samples in five non-model animal species, based on next-generation sequencing transcriptome data. We introduce a pipe-line for cDNA assembly, read mapping, SNP/genotype calling, and data cleaning, with specific focus on the issue of hidden paralogy detection. In two species for which a reference genome is available, similar results were obtained whether the reference was used or not, demonstrating the robustness of our de novo inferences. The population genomic profile of a hare, a turtle, an oyster, a tunicate, and a termite were found to be intermediate between those of human and Drosophila, indicating that the discordant genomic diversity patterns that have been reported between these two species do not reflect a generalized vertebrate versus invertebrate gap. The genomic average diversity was generally higher in invertebrates than in vertebrates (with the notable exception of termite), in agreement with the notion that population size tends to be larger in the former than in the latter. The non-synonymous to synonymous ratio, however, did not differ significantly between vertebrates and invertebrates, even though it was negatively correlated with genetic diversity within each of the two groups. This study opens promising perspective regarding genome-wide population analyses of non-model organisms and the influence of population size on non-synonymous versus synonymous diversity.


Molecular Ecology | 2006

The rise and fall of the mountain hare ( Lepus timidus ) during Pleistocene glaciations: expansion and retreat with hybridization in the Iberian Peninsula

José Melo-Ferreira; Pierre Boursot; Ettore Randi; A. Kryukov; Franz Suchentrunk; Nuno Ferrand; Paulo C. Alves

The climatic fluctuations during glaciations have affected differently arctic and temperate species. In the northern hemisphere, cooling periods induced the expansion of many arctic species to the south, while temperate species were forced to retract in southern refugia. Consequently, in some areas the alternation of these species set the conditions for competition and eventually hybridization. Hares in the Iberian Peninsula appear to illustrate this phenomenon. Populations of Iberian hare (Lepus granatensis), brown hare (Lepus europaeus) and broom hare (Lepus castroviejoi) in Northern Iberia harbour mitochondrial haplotypes from the mountain hare (Lepus timidus), a mainly boreal and arctic species presently absent from the peninsula. To understand the history of this past introgression we analysed sequence variation and geographical distribution of mitochondrial control region and cytochrome b haplotypes of L. timidus origin found in 378 specimens of these four species. Among 124 L. timidus from the Northern Palaearctic and the Alps we found substantial nucleotide diversity (2.3%) but little differentiation between populations. Based on the mismatch distribution of the L. timidus sequences, this could result from an expansion at a time of temperature decrease favourable to this arctic species. The nucleotide diversity of L. timidus mtDNA found in Iberian L. granatensis, L. europaeus and L. castroviejoi (183, 70 and 1 specimens, respectively) was of the same order as that in L. timidus over its range (1.9%), suggesting repeated introgression of multiple lineages. The structure of the coalescent of L. granatensis sequences indicates that hybridization with L. timidus was followed by expansion of the introgressed haplotypes, as expected during a replacement with competition, and occurred when temperatures started to rise, favouring the temperate species. Whether a similar scenario explains the introgression into Iberian L. europaeus remains unclear but it is possible that it hybridized with already introgressed L. granatensis.


Philosophical Transactions of the Royal Society B | 2008

The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus

Paulo C. Alves; José Melo-Ferreira; Hélder Freitas; Pierre Boursot

Climatic oscillations during the glaciations forced dramatic changes in species distributions, such that some presently temperate regions were alternately occupied by temperate and arctic species. These species could have met and hybridized during climatic transitions. This phenomenon happened for three hare species present in Iberia (Lepus granatensis, Lepus europaeus and Lepus castroviejoi), which display high frequencies of mitochondrial DNA (mtDNA) from Lepus timidus, an arctic/boreal species presently extinct in Iberia. Here, we extend our previous geographical survey to determine whether the distribution of this mtDNA lineage extends beyond the northern half of the Iberian Peninsula, where it is found at high frequencies. We also review the taxonomy, distribution and molecular phylogeny of the genus Lepus. The phylogenetic inference reveals the presence of L. timidus-like mtDNA in several other hare species in Asia and North America, suggesting that the mitochondrial introgression observed in Iberia might be generalized. Comparison with the available nuclear gene phylogenies suggests that introgression could have happened repeatedly, possibly during different climatic transitions. We discuss demographic and adaptive scenarios that could account for the repetition in time and space of this spectacular phenomenon and suggest ways to improve our understanding of its determinants and consequences. Such high levels of introgressive hybridization should discourage attempts to revise hare taxonomy based solely on mtDNA.


Systematic Biology | 2012

Recurrent Introgression of Mitochondrial DNA Among Hares (Lepus spp.) Revealed by Species-Tree Inference and Coalescent Simulations

José Melo-Ferreira; Pierre Boursot; Miguel Carneiro; Pedro J. Esteves; Liliana Farelo; Paulo C. Alves

Understanding recent speciation history requires merging phylogenetic and population genetics approaches, taking into account the persistence of ancestral polymorphism and possible introgression. The emergence of a clear phylogeny of hares (genus Lepus) has been hampered by poor genomic sampling and possible occurrence of mitochondrial DNA (mtDNA) introgression from the arctic/boreal Lepus timidus into several European temperate and possibly American boreal species. However, no formal test of introgression, taking also incomplete lineage sorting into account, has been done. Here, to clarify the yet poorly resolved species phylogeny of hares and test hypotheses of mtDNA introgression, we sequenced 14 nuclear DNA and 2 mtDNA fragments (8205 and 1113 bp, respectively) in 50 specimens from 11 hare species from Eurasia, North America, and Africa. By applying an isolation-with-migration model to the nuclear data on subsets of species, we find evidence for very limited gene flow from L. timidus into most temperate European species, and not into the American boreal ones. Using a multilocus coalescent-based method, we infer the species phylogeny, which we find highly incongruent with mtDNA phylogeny using parametric bootstrap. Simulations of mtDNA evolution under the speciation history inferred from nuclear genes did not support the hypothesis of mtDNA introgression from L. timidus into the American L. townsendii but did suggest introgression from L. timidus into 4 temperate European species. One such event likely resulted in the complete replacement of the aboriginal mtDNA of L. castroviejoi and of its sister species L. corsicanus. It is remarkable that mtDNA introgression in hares is frequent, extensive, and always from the same donor arctic species. We discuss possible explanations for the phenomenon in relation to the dynamics of range expansions and species replacements during the climatic oscillations of the Pleistocene.


Molecular Ecology | 2009

The genomic legacy from the extinct Lepus timidus to the three hare species of Iberia: contrast between mtDNA, sex chromosomes and autosomes

José Melo-Ferreira; Paulo C. Alves; H. Freitas; Nuno Ferrand; Pierre Boursot

Extensive interspecific genetic introgression is often reported, and appraising its genomic impact can serve to determine whether it results from selection on specific loci or from demographic processes affecting the whole genome. The three species of hares present in the Iberian Peninsula harbour high frequencies of mitochondrial DNA (mtDNA) from Lepus timidus, an arctic/boreal species now extinct in the region. This could result from the invasive replacement of L. timidus by the temperate species during deglaciation but should then have left traces in the nuclear genome. We typed single nucleotide polymorphisms (SNPs) discovered by sequencing 10 autosomal loci, two X‐linked and one Y‐linked in species‐wide samples of the four taxa. Based on lineage‐diagnostic SNPs, we detected no trace of L. timidus sex chromosomes in Iberia. From the frequencies of inferred haplotypes, autosomal introgression into L. granatensis appeared mostly sporadic but always widespread instead of restricted to the north as mtDNA. Autosomal introgression into Iberian L. europaeus, inhabiting the Pyrenean foothills, was hardly detectable, despite quasi‐fixation of L. timidus mtDNA. L. castroviejoi, endemic to the Cantabrian Mountains and fixed for L. timidus mtDNA, showed little traces of autosomal introgression. The absence of sex‐chromosome introgression presumably resulted from X‐linked hybrid male unfitness. The contrasting patterns between the autosomes and mtDNA could reflect general gender asymmetric processes such as frequency‐dependent female assortative mating, lower mtDNA migration and higher male dispersal, but adaptive mtDNA introgression cannot be dismissed. Additionally, we document reciprocal introgression between L. europaeus and both L. granatensis in Iberia and L. timidus outside Iberia.


PLOS Genetics | 2014

The genomic architecture of population divergence between subspecies of the european rabbit

Miguel Carneiro; Frank W. Albert; Sandra Afonso; Ricardo J. Pereira; Hernán A. Burbano; Rita Campos; José Melo-Ferreira; José Antonio Blanco-Aguiar; Rafael Villafuerte; Michael W. Nachman; Jeffrey M. Good; Nuno Ferrand

The analysis of introgression of genomic regions between divergent populations provides an excellent opportunity to determine the genetic basis of reproductive isolation during the early stages of speciation. However, hybridization and subsequent gene flow must be relatively common in order to localize individual loci that resist introgression. In this study, we used next-generation sequencing to study genome-wide patterns of genetic differentiation between two hybridizing subspecies of rabbits (Oryctolagus cuniculus algirus and O. c. cuniculus) that are known to undergo high rates of gene exchange. Our primary objective was to identify specific genes or genomic regions that have resisted introgression and are likely to confer reproductive barriers in natural conditions. On the basis of 326,000 polymorphisms, we found low to moderate overall levels of differentiation between subspecies, and fewer than 200 genomic regions dispersed throughout the genome showing high differentiation consistent with a signature of reduced gene flow. Most differentiated regions were smaller than 200 Kb and contained very few genes. Remarkably, 30 regions were each found to contain a single gene, facilitating the identification of candidate genes underlying reproductive isolation. This gene-level resolution yielded several insights into the genetic basis and architecture of reproductive isolation in rabbits. Regions of high differentiation were enriched on the X-chromosome and near centromeres. Genes lying within differentiated regions were often associated with transcription and epigenetic activities, including chromatin organization, regulation of transcription, and DNA binding. Overall, our results from a naturally hybridizing system share important commonalities with hybrid incompatibility genes identified using laboratory crosses in mice and flies, highlighting general mechanisms underlying the maintenance of reproductive barriers.


Molecular Biology and Evolution | 2012

Evidence for widespread positive and purifying selection across the European rabbit (Oryctolagus cuniculus) genome

Miguel Carneiro; Frank W. Albert; José Melo-Ferreira; Nicolas Galtier; Philippe Gayral; José Antonio Blanco-Aguiar; Rafael Villafuerte; Michael W. Nachman; Nuno Ferrand

The nearly neutral theory of molecular evolution predicts that the efficacy of both positive and purifying selection is a function of the long-term effective population size (N(e)) of a species. Under this theory, the efficacy of natural selection should increase with N(e). Here, we tested this simple prediction by surveying ~1.5 to 1.8 Mb of protein coding sequence in the two subspecies of the European rabbit (Oryctolagus cuniculus algirus and O. c. cuniculus), a mammal species characterized by high levels of nucleotide diversity and N(e) estimates for each subspecies on the order of 1 × 10(6). When the segregation of slightly deleterious mutations and demographic effects were taken into account, we inferred that >60% of amino acid substitutions on the autosomes were driven to fixation by positive selection. Moreover, we inferred that a small fraction of new amino acid mutations (<4%) are effectively neutral (defined as 0 < N(e)s < 1) and that this fraction was negatively correlated with a genes expression level. Consistent with models of recurrent adaptive evolution, we detected a negative correlation between levels of synonymous site polymorphism and the rate of protein evolution, although the correlation was weak and nonsignificant. No systematic X chromosome-autosome difference was found in the efficacy of selection. For example, the proportion of adaptive substitutions was significantly higher on the X chromosome compared with the autosomes in O. c. algirus but not in O. c. cuniculus. Our findings support widespread positive and purifying selection in rabbits and add to a growing list of examples suggesting that differences in N(e) among taxa play a substantial role in determining rates and patterns of protein evolution.


BMC Evolutionary Biology | 2011

Introgression of mitochondrial DNA among Myodes voles: consequences for energetics?

Zbyszek Boratyński; Paulo C. Alves; Stefano Berto; Esa Koskela; Tapio Mappes; José Melo-Ferreira

BackgroundIntrogression of mitochondrial DNA (mtDNA) is among the most frequently described cases of reticulate evolution. The tendency of mtDNA to cross interspecific barriers is somewhat counter-intuitive considering the key function of enzymes that it encodes in the oxidative-phosphorylation process, which could give rise to hybrid dysfunction. How mtDNA reticulation affects the evolution of metabolic functions is, however, uncertain. Here we investigated how morpho-physiological traits vary in natural populations of a common rodent (the bank vole, Myodes glareolus) and whether this variation could be associated with mtDNA introgression. First, we confirmed that M. glareolus harbour mtDNA introgressed from M. rutilus by analyzing mtDNA (cytochrome b, 954 bp) and nuclear DNA (four markers; 2333 bp in total) sequence variation and reconstructing loci phylogenies among six natural populations in Finland. We then studied geographic variation in body size and basal metabolic rate (BMR) among the populations of M. glareolus and tested its relationship with mtDNA type.ResultsMyodes glareolus and its arctic neighbour, M. rutilus, are reciprocally monophyletic at the analyzed nuclear DNA loci. In contrast, the two northernmost populations of M. glareolus have a fixed mitotype that is shared with M. rutilus, likely due to introgressive hybridization. The analyses of phenotypic traits revealed that the body mass and whole-body, but not mass corrected, BMR are significantly reduced in M. glareolus females from northern Finland that also have the introgressed mitotype. Restricting the analysis to the single population where the mitotypes coexist, the association of mtDNA type with whole-body BMR remained but those with mass corrected BMR and body mass did not. Mitochondrial sequence variation in the introgressed haplotypes is compatible with demographic growth of the populations, but may also be a result of positive selection.ConclusionOur results show that the phenotypic traits vary markedly along the north-south axis of populations of M. glareolus. This variation may be related to adaptation to local environments and coincides with the gradient of genome reticulation between M. glareolus and M. rutilus, which was assessed by mtDNA introgression. Introgression of mtDNA may have affected morpho-physiological traits but do not show strong effects on either body mass or basal metabolic rate alone. We discuss the causes and biological meaning of our results and the means to clarify these questions in future research.

Collaboration


Dive into the José Melo-Ferreira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Boursot

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pelayo Acevedo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franz Suchentrunk

University of Veterinary Medicine Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge