Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José Miguel Soria is active.

Publication


Featured researches published by José Miguel Soria.


Tissue Engineering Part A | 2008

Differentiation of Postnatal Neural Stem Cells into Glia and Functional Neurons on Laminin-Coated Polymeric Substrates

Cristina Martínez-Ramos; Sergio Laínez; Francisco J. Sancho; M. Angeles Garcia Esparza; Rosa Planells-Cases; José Manuel García Verdugo; José Luis Gómez Ribelles; Manuel Salmerón Sánchez; Manuel Monleón Pradas; Juan A. Barcia; José Miguel Soria

A series of polymeric biomaterials, including poly(methyl acrylate), chitosan, poly(ethyl acrylate) (PEA), poly(hydroxyethyl acrylate) (PHEA), and a series of random copolymers containing ethyl acrylate, hydroxyethyl acrylate, and methyl acrylate were tested in vitro as culture substrates and compared for their effect on the differentiation of neural stem cells (NSCs) obtained from the subventricular zone of postnatal rats. Immunocytochemical assay for specific markers and scanning electron microscopy techniques were employed to determine the adhesion of the cultured NSCs to the different biomaterials and the respective neuronal differentiation. The functional properties and the membrane excitability of differentiated NSCs were investigated using a patch-clamp. The results show that the substrates surface chemistry influences cell attachment and neuronal differentiation, probably through its influence on adsorbed laminin, and that copolymers based on PEA and PHEA in a narrow composition window are suitable substrates to promote cell attachment and differentiation of adult NSCs into functional neurons and glia.


Journal of Biomedical Materials Research Part A | 2010

Novel poly(L-lactic acid)/hyaluronic acid macroporous hybrid scaffolds: characterization and assessment of cytotoxicity.

J. C. Antunes; Joaquim M. Oliveira; Rui L. Reis; José Miguel Soria; José Luis Gómez-Ribelles; João F. Mano

Poly(L-lactic acid), PLLA, a synthetic biodegradable polyester, is widely accepted in tissue engineering. Hyaluronic acid (HA), a natural polymer, exhibits an excellent biocompatibility, influences cell signaling, proliferation, and differentiation. In this study, HA crosslinking was performed by immersion of the polysaccharide in water-acetone mixtures containing glutaraldehyde (GA). The objective of this work is to produce PLLA scaffolds with the pores coated with HA, that could be beneficial for bone tissue engineering applications. PLLA tridimensional scaffolds were prepared by compression molding followed by salt leaching. After the scaffolds impregnation with soluble HA solutions of distinct concentration, a GA-crosslinking reaction followed by inactivation of the unreacted GA with glycine was carried out. An increase on surface roughness is shown by scanning electron microscopy (SEM) with the addition of HA. Toluidine blue staining indicates the present of stable crosslinked HA. An estimation of the HA original weight in the hybrid scaffolds was performed using thermal gravimetric analyses. FTIR-ATR and XPS confirmed the crosslinking reaction. Preliminary in vitro cell culture studies were carried out using a mouse lung fibroblast cell line (L929). SEM micrographs of L929 showed that cells adhered well, spread actively throughout all scaffolds, and grew favorably. A MTS test indicated that cells were viable when cultured onto the surface of all scaffolds, suggesting that the introduction of crosslinked HA did not increase the cytotoxicity of the hybrid scaffolds.


Neuroscience | 2012

Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury

Brenda Rocamonde; Sara Paradells; Jorge M. Barcia; Carlos Barcia; J.M. García Verdugo; María Miranda; F.J. Romero Gómez; José Miguel Soria

After trauma brain injury, a large number of cells die, releasing neurotoxic chemicals into the extracellular medium, decreasing cellular glutathione levels and increasing reactive oxygen species that affect cell survival and provoke an enlargement of the initial lesion. Alpha-lipoic acid is a potent antioxidant commonly used as a treatment of many degenerative diseases such as multiple sclerosis or diabetic neuropathy. Herein, the antioxidant effects of lipoic acid treatment after brain cryo-injury in rat have been studied, as well as cell survival, proliferation in the injured area, gliogenesis and angiogenesis. Thus, it is shown that newborn cells, mostly corresponded with blood vessels and glial cells, colonized the damaged area 15 days after the lesion. However, lipoic acid was able to stimulate the synthesis of glutathione, decrease cell death, promote angiogenesis and decrease the glial scar formation. All those facts allow the formation of new neural tissue. In view of the results herein, lipoic acid might be a plausible pharmacological treatment after brain injury, acting as a neuroprotective agent of the neural tissue, promoting angiogenesis and reducing the glial scar formation. These findings open new possibilities for restorative strategies after brain injury, stroke or related disorders.


Journal of Biomedical Materials Research Part A | 2011

Biomaterials coated by dental pulp cells as substrate for neural stem cell differentiation

José Miguel Soria; María Sancho-Tello; M. Angeles Garcia Esparza; Vicente Mirabet; Jose V. Bagan; Manuel Monleón; Carmen Carda

This study is focused on the development of an in vitro hybrid system, consisting in a polymeric biomaterial covered by a dental pulp cellular stroma that acts as a scaffold offering a neurotrophic support for the subsequent survival and differentiation of neural stem cells. In the first place, the behavior of dental pulp stroma on the polymeric biomaterial based on ethyl acrylate and hydroxy ethyl acrylate copolymer was studied. For this purpose, cells from normal human third molars were grown onto 0.5-mm-diameter biomaterial discs. After cell culture, quantification of neurotrophic factors generated by the stromal cells was performed by means of an ELISA assay. In the second place, survival and differentiation of adult murine neural stem cells on the polymeric biomaterials covered by dental pulp stromal cells was studied. The results show the capacity of dental pulp cells to uniformly coat the majority of the materials surface and to secrete neurotrophic factors that become crucial for a subsequent differentiation of neural stem cells. The use of stromal cells cultured on scaffolding biomaterials provides neurotrophic pumps that may suggest new criteria for the design of cell therapy experiments in animal models to assist the repair of lesions in Central Nervous System.


Journal of Oral Pathology & Medicine | 2013

Bisphosphonates-related osteonecrosis of the jaws: a preliminary study of salivary interleukins.

Jose V. Bagan; Chirag C. Sheth; José Miguel Soria; María Margaix; Leticia Bagan

OBJECTIVE The aim of this preliminary study was analyze the possible alterations in some salivary interleukins, usually associated with the inflammatory processes. MATERIAL AND METHODS The study comprised three groups: group 1, with 26 cases with bisphosphonates-related osteonecrosis of the jaws (BRONJ). Group 2, with 29 patients who had received iBF but without BRONJ. Group 3, with 26 control patients not treated with BF and without oral lesions. We collected unstimulated whole saliva in all groups. A semiquantitative study was performed based on a cytokine array panel. We used the proteome profiler array for the study. We analyzed: Interleukin 1 alpha (IL-1α), interleukin-1 receptor antagonist (IL-1RA), and interleukin 1 beta (IL-1β). RESULTS We found higher salivary values for all the cytokines studied in group 1 than in group 2 and 3. IL-1β showed the major differences compared with control group. (P < 0.05) CONCLUSIONS This preliminary study confirms that there are alterations in these interleukins in patients with BRONJ. These results give support to further additional salivary studies on these biomarkers by quantitative measures.


Journal of Biomaterials Applications | 2012

In vitro 3D culture of human chondrocytes using modified ε-caprolactone scaffolds with varying hydrophilicity and porosity.

Marcos Pérez Olmedilla; Myriam Lebourg; J. L. Escobar Ivirico; I Nebot; N Garcia Giralt; G. Gallego Ferrer; José Miguel Soria; J.L. Gómez Ribelles

Two series of 3D scaffolds based on ε-caprolactone were synthesized. The pore size and architecture (spherical interconnected pores) was the same in all the scaffolds. In one of the series of scaffolds, made of pure ε-polycaprolactone, the volume fraction of pores varied between 60% and 85% with the main consequence of varying the interconnectivity between pores since the pore size was kept constant. The other scaffolds were prepared with copolymers made of a ε-caprolactone-based hydrophobous monomer and hydroxyethyl acrylate, as the hydrophilic component. Thus, the hydrophilicity and, presumably, the adhesion properties varied monotonously in the copolymer series while porosity was kept constant. A suspension of human chondrocytes in culture medium was injected in the 3D scaffolds and cultured in static conditions up to 28 days. SEM and immunofluorescence assays allowed characterizing cells and extracellular matrix inside the scaffolds after different culture times. To do that, cross sections of the scaffolds were observed by SEM and confocal microscopy. The quantity of cells inside the scaffolds decreases with a decrease of the volume fraction of pores, due to the lack of interconnectivity between the cavities. The scaffolds up to a 30% of hydrophilicity behave in a similar way than the hydrophobous; a further increase of the hydrophilicity rapidly decreases cell viability. In all the experiments production of collagen type I, type II, and aggrecan was found, and some cells were Ki-67 positive, showing that some cells are adhered to the pore walls and maintain their dedifferentiated phenotype even when cultured in three-dimensional conditions.


Journal of Applied Toxicology | 2015

Neurotoxic effects of ochratoxin A on the subventricular zone of adult mouse brain.

Sara Paradells; Brenda Rocamonde; Cristina Llinares; Vicente Herranz-Pérez; M. Jiménez; Jose Manuel Garcia-Verdugo; Ivan Zipancic; José Miguel Soria; Ma. Angeles Garcia-Esparza

Ochratoxin A (OTA), a mycotoxin that was discovered as a secondary metabolite of the fungal species Aspergillus and Penicillium, is a common contaminant in food and animal feed. This mycotoxin has been described as teratogenic, carcinogenic, genotoxic, immunotoxic and has been proven a potent neurotoxin. Other authors have previously reported the effects of OTA in different structures of the central nervous system as well as in some neurogenic regions. However, the impact of OTA exposure in the subventricular zone (SVZ) has not been assessed yet. To elucidate whether OTA affects neural precursors of the mouse SVZ we investigated, in vitro and in vivo, the effects of OTA exposure on the SVZ and on the neural precursors obtained from this neurogenic niche. In this work, we prove the cumulative effect of OTA exposure on proliferation, differentiation and depletion of neural stem cells cultured from the SVZ. In addition, we corroborated these results in vivo by immunohistochemistry and electron microscopy. As a result, we found a significant alteration in the proliferation process, which was evidenced by a decrease in the number of 5‐bromo‐2‐deoxyuridine‐positive cells and glial cells, as well as, a significant decrease in the number of neuroblasts in the SVZ. To summarize, in this study we demonstrate how OTA could be a threat to the developing and the adult SVZ through its impact in cell viability, proliferation and differentiation in a dose‐dependent manner. Copyright


Journal of Biomaterials Applications | 2011

Three-Dimensional Scaffolds as a Model System for Neural and Endothelial ‘In Vitro’ Culture

Diana D. Veiga; Joana Isabel Costa Antunes; Roberto Garcia Gomez; João F. Mano; José Luis Gómez Ribelles; José Miguel Soria

Biomaterials based on the hydrophobic homopolymer poly(ethyl acrylate), PEA, and its copolymers with hydroxyethyl acrylate, p(EA-co-HEA) and methacrylic acid, p(EA-co-MAAc) were prepared as polymeric scaffolds with interconnected pores of 90 microns and tested in vitro as culture substrates and compared for their impact on the differentiation of neural stem cells (NSC) obtained from the subventricular zone (SVZ) of postnatal rats and human endothelial cells (HUVEC). Immunocytochemical staining assay for specific markers show that p(EA-co-MAAc) scaffolds were suitable substrates to promote cell attachment and differentiation of adult NSC and HUVEC cells.


ACS Chemical Neuroscience | 2017

Neuroprotection of Brain Cells by Lipoic Acid Treatment after Cellular Stress

Sara Paradells-Navarro; María Soledad Benlloch-Navarro; María Inmaculada Almansa Frias; Ma. Angeles Garcia-Esparza; Vania Broccoli; María Miranda; José Miguel Soria

We have previously observed that in vivo lipoic acid (LA) treatment induced a protective effect onto primary cortical neurons after brain injury. In an effort to better understand LA action mechanism in the brain, in the present study, we stressed brain cells in vitro and ex vivo and then analyzed by inmmunocytochemistry and biochemical assays, the changes induced by LA on cell survival and on the concentration of oxidative stress markers, such as glutathione (GSH), oxidized glutathione (GSSG), and malondialdehyde (MDA). The stressors used were lipopolysaccharide (LPS), dopamine, and l-buthionine-S,R-sulfoximine (BSO). Our results showed that LA decreased cell death and increased GSH/GSSG ratio in cells stressed by LPS + dopamine, suggesting that the mechanism underlying LA action is regeneration of GSSG to GSH. When cells were stressed by BSO, LA diminished cell death and decreased GSH/GSSG ratio. In this case, it could be concluded that, due to the low GSH basal levels, GSSG reduction is not possible and therefore it might be thought that cell death prevention might be mediated through other mechanisms. Finally, we induced chemical oxidative damage in brain homogenate. After LA treatment, GSH and GSH/GSSG ratio increased and MDA concentration decreased, demonstrating again that LA was not able to increase de novo GSH synthesis but is able to increase GSSG conversion to GSH.


Caries Research | 2016

Di-Calcium Phosphate and Phytosphingosine as an Innovative Acid-Resistant Treatment to Occlude Dentine Tubules.

Salvatore Sauro; Ching-Yang Lin; Floris J. Bikker; Giuseppe Cama; Peter Dubruel; José Miguel Soria; Alessia D''Onofrio; David G. Gillam

The present investigation evaluated the ability of an experimental di-calcium phosphate (DCP) desensitising agent used alone or combined with phytosphingosine (PHS) to occlude dentine tubules and resist a citric acid (CA) or artificial saliva (AS) challenge. Three groups of human dentine specimens (DS) were treated with the following: (1) PHS alone, (2) DCP or (3) a combination of PHS and DCP. Dentine hydraulic conductance of DS was evaluated using a digital flow sensor at 6.9 kPa. The average fluid volume for each of the treated DS was used to calculate the total dentine permeability reduction (%P) prior to and following CA immersion for 1 min or AS immersion for 4 weeks. The treated DS were subjected to both scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy analysis. Statistically significant differences (%P) were identified between the groups by ANOVA and Fishers multiple comparison test (p < 0.05), respectively. Interestingly, both PHS and DCP appeared to work synergistically. DS treated with DCP or PHS/DCP demonstrated a significant reduction (%P) prior to and following CA or AS challenge (p < 0.05). Both the SEM and FTIR analyses showed consistent brushite crystals occluding the dentine tubules. Conversely, the application of PHS alone failed to demonstrate any significant reduction of dentine permeability (p > 0.05) or show any evidence of occlusion of the dentine tubules. DCP can be used alone or combined with PHS to decrease the dentine permeability as well as to resist a CA and AS challenge. These results would, therefore, suggest that DCP may be a suitable treatment option for dentine hypersensitivity.

Collaboration


Dive into the José Miguel Soria's collaboration.

Top Co-Authors

Avatar

Manuel Monleón Pradas

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

María Miranda

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

J.L. Gómez Ribelles

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuel Salmerón Sánchez

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristina Martínez Ramos

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Ivan Zipancic

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge