Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José O. Previato is active.

Publication


Featured researches published by José O. Previato.


Journal of Immunology | 2004

Expression of functional TLR4 confers proinflammatory responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher resistance to infection with T. cruzi.

Ana-Carolina Oliveira; Jaqueline R. Peixoto; Luciana Barros de Arruda; Marco A. Campos; Ricardo T. Gazzinelli; Douglas T. Golenbock; Shizuo Akira; José O. Previato; Lucia Mendonça-Previato; Alberto Nobrega; Maria Bellio

TLRs function as pattern recognition receptors in mammals and play an essential role in the recognition of microbial components. We found that the injection of glycoinositolphospholipids (GIPLs) from Trypanosoma cruzi into the peritoneal cavity of mice induced neutrophil recruitment in a TLR4-dependent manner: the injection of GIPL in the TLR4-deficient strain of mice (C57BL/10ScCr) caused no inflammatory response. In contrast, in TLR2 knockout mice, neutrophil chemoattraction did not differ significantly from that seen in wild-type controls. GIPL-induced neutrophil attraction and MIP-2 production were also severely affected in TLR4-mutant C3H/HeJ mice. The role of TLR4 was confirmed in vitro by testing genetically engineered mutants derived from TLR2-deficient Chinese hamster ovary (CHO)-K1 fibroblasts that were transfected with CD14 (CHO/CD14). Wild-type CHO/CD14 cells express the hamster TLR4 molecule and the mutant line, in addition, expresses a nonfunctional form of MD-2. In comparison to wild-type cells, mutant CHO/CD14 cells failed to respond to GIPLs, indicating a necessity for a functional TLR4/MD-2 complex in GIPL-induced NF-κB activation. Finally, we found that TLR4-mutant mice were hypersusceptible to T. cruzi infection, as evidenced by a higher parasitemia and earlier mortality. These results demonstrate that natural resistance to T. cruzi is TLR4 dependent, most likely due to TLR4 recognition of their GIPLs.


Cellular Microbiology | 2008

Capsular polysaccharides galactoxylomannan and glucuronoxylomannan from Cryptococcus neoformans induce macrophage apoptosis mediated by Fas ligand.

Suellen N. Villena; Roberta Olmo Pinheiro; Carla S. Pinheiro; Marise P. Nunes; Cristina Takiya; George A. DosReis; José O. Previato; Lucia Mendonça-Previato; Célio G. Freire-de-Lima

The effects of capsular polysaccharides, galactoxylomannan (GalXM) and glucuronoxylomannan (GXM), from acapsular (GXM negative) and encapsulate strains of Cryptococcus neoformans were investigated in RAW 264.7 and peritoneal macrophages. Here, we demonstrate that GalXM and GXM induced different cytokines profiles in RAW 264.7 macrophages. GalXM induced production of TNF‐α, NO and iNOS expression, while GXM predominantly induced TGF‐β secretion. Both GalXM and GXM induced early morphological changes identified as autophagy and late macrophages apoptosis mediated by Fas/FasL interaction, a previously unidentified mechanism of virulence. GalXM was more potent than GXM at induction of Fas/FasL expression and apoptosis on macrophages in vitro and in vivo. These findings uncover a mechanism by which capsular polysaccharides from C. neoformans might compromise host immune responses.


Journal of Biological Chemistry | 1998

Biosynthesis ofO-N-Acetylglucosamine-linked Glycans inTrypanosoma cruzi CHARACTERIZATION OF THE NOVEL URIDINE DIPHOSPHO-N-ACETYLGLUCOSAMINE:POLYPEPTIDE N-ACETYLGLUCOSAMINYLTRANSFERASE-CATALYZING FORMATION OFN-ACETYLGLUCOSAMINE α1→O-THREONINE

José O. Previato; Mauro Sola-Penna; Orlando A. Agrellos; Christopher Jones; Thomas Oeltmann; Luiz R. Travassos; Lucia Mendonça-Previato

In this study, we have characterized the activity of a uridine diphospho-N-acetylglucosamine:polypeptide-α-N-acetylglucosaminyltransferase (O-α-GlcNAc-transferase) from Trypanosoma cruzi. The activity is present in microsomal membranes and is responsible for the addition of O-linked α-N-acetylglucosamine to cell surface proteins. This preparation adds N-acetylglucosamine to a synthetic peptide KPPTTTTTTTTKPP containing the consensus threonine-rich dodecapeptide encoded by T. cruzi MUC gene (Di Noia, J. M., Sánchez D. O., and Frasch, A. C. C. (1995) J. Biol. Chem. 270, 24146–24149). Incorporation ofN-[3H]acetylglucosamine is linearly dependent on incubation time and concentration of enzyme and substrate. The transferase activity has an optimal pH of 7.5- 8.5, requires Mn2+, is unaffected by tunicamycin or amphomycin, and is strongly inhibited by UDP. The optimized synthetic peptide acceptor for the cytosolic O-GlcNAc-transferase (YSDSPSTST) (Haltiwanger, R. S., Holt, G. D., and Hart, G. W. (1990)J. Biol. Chem. 265, 2563–2568) is not a substrate for this enzyme. The glycosylated KPPTTTTTTTTKPP product is susceptible to base-catalyzed β-elimination, and the presence ofN-acetylglucosamine α-linked to threonine is supported by enzymatic digestion and nuclear magnetic resonance data. These results describe a unique biosynthetic pathway for T. cruzi surface mucin-like molecules, with potential chemotherapeutic implications.


Journal of Immunology | 2002

Costimulation of Host T Lymphocytes by a Trypanosomal trans-Sialidase: Involvement of CD43 Signaling

Adriane R. Todeschini; Marise P. Nunes; Rachel S. Pires; Marcela F. Lopes; José O. Previato; Lucia Mendonça-Previato; George A. DosReis

Trans-sialidase is a membrane-bound and shed sialidase from Trypanosoma cruzi, the protozoan parasite responsible for Chagas disease. We investigated the role of soluble trans-sialidase on host CD4+ T cell activation. Trans-sialidase activated naive CD4+ T cells in vivo. Both enzymatically active and inactive recombinant trans-sialidases costimulated CD4+ T cell activation in vitro. Costimulation resulted in increased mitogen-activated protein kinase activation, proliferation, and cytokine synthesis. Furthermore, active and inactive trans-sialidases blocked activation-induced cell death in CD4+ T cells from T. cruzi-infected mice. By flow cytometry, inactive trans-sialidase bound the highly sialylated surface Ag CD43 on host CD4+ T cells. Both costimulatory and antiapoptotic effects of trans-sialidases required CD43 signaling. These results suggest that trans-sialidase family proteins are involved in exacerbated host T lymphocyte responses observed in T. cruzi infection.


Advances in Parasitology | 2003

Glycoinositolphospholipid from Trypanosoma cruzi: Structure, Biosynthesis and Immunobiology

José O. Previato; Robin Wait; Christopher Jones; George A. DosReis; Adriane R. Todeschini; Norton Heise; Lucia Mendonça Previato

The pathogenic protozoan parasite Trypanosoma cruzi expresses on its surface an unusual family of glycoinositolphospholipids (GIPLs) closely related to glycosylphosphatidylinositol (GPI) anchors. Different parasite isolates express distinct GIPLs which fall into two series, depending on the substitution of the third mannosyl residue in the conserved glycan sequence Man4-(AEP)-GlcN-InsPO4 by ethanolamine phosphate or beta-galactofuranose. Although the exact role of these molecules in the cell biology and pathogenicity of T. cruzi remains unknown, the lipid and glycan moieties impart distinct responses to host T and B lymphocytes and phagocytes, overall favouring an immune response permissive to the parasite. The biosynsthesis of GIPLs follows a pathway similar to that observed for GPI anchors. However, a more detailed understanding might enable the development of specific inhibitors of parasite-specific enzymes and lead to novel drugs to ameliorate Chagas disease.


Glycoconjugate Journal | 1996

STRUCTURAL VARIATION IN THE GLYCOINOSITOLPHOSPHOLIPIDS OF DIFFERENT STRAINS OF TRYPANOSOMA CRUZI

João Carlos Araujo Carreira; Christopher Jones; Robin Wait; José O. Previato; Lucia Mendonça-Previato

The structures of the glycoinositolphospholipids (GIPLs) from five strains of the protozoan parasiteTrypanosoma cruzi have been determined. Two series of structures were identified, all but one containing the same Man4(AEP)GlcN-Ins-PO4 core. Series 1 oligosaccharides are substituted at the third mannose distal to inositol (Man 3) by ethanolamine-phosphate or 2-aminoethylphosphonic acid, as are some glycosyl-phosphatidylinositol-protein anchors ofT. cruzi. The core can be further substituted by terminal (1–3)-linked β-galactofuranose units. In contrast, Series 2 oligosaccharides do not have additional phosphorus-containing groups attached to Man 3, the latter being substituted instead by a single side chain unit of β-galactofuranose. Series 1 oligosaccharides are present in all strains (G, G-645, Tulahuen CL, and Y) whereas Series 2 structures are present mainly in CL and Y strains. The lipid moiety in the GIPLs from the G, G-645 and Tulahuen strains is predominantly ceramide, as reported for the Y strain, whilst that from the CL strain is a mixture of ceramide and alkylacylglycerol species. The lipid moiety of the GIPLs, and probably also the phosphoinositol-oligosaccharide structures may play an important immunomodulatory role in infection byT. cruzi.


Applied and Environmental Microbiology | 2003

Effects of iron limitation on adherence and cell surface carbohydrates of Corynebacterium diphtheriae strains.

L. O. Moreira; Arnaldo Feitosa Braga Andrade; Sônia Maria Silva de Souza; Raphael Hirata; Lídia Maria Oliveira Buarque Asad; Nasser Ribeiro Asad; Luiz Henrique Monteiro-Leal; José O. Previato; Ana Luiza Mattos-Guaraldi

ABSTRACT Iron limitation may cause bacterial pathogens to grow more slowly; however, it may also stimulate these microorganisms to produce greater tissue damage, given that many virulence factors are controlled by the iron supply in the environment. The present study investigated the influence of low iron availability on the expression of proteins and surface sugar residues of two toxigenic strains of Corynebacterium diphtheriae subsp. mitis and evaluated their adherence to human group B erythrocytes and HEp-2 cells. A comparison was made between bacteria grown in (i) Trypticase soy broth (TSB), (ii) TSB treated with dipyridyl to deplete free iron, and (iii) TSB enriched with FeCl3. The effects of iron concentration on adhesive properties were different for strains 241 and CDC-E8392, of the sucrose-fermenting and non-sucrose-fermenting biotypes, respectively. Iron-limited conditions enhanced interaction of strain 241 with erythrocytes and HEp-2 cells. Inhibition assays suggested the involvement of nonfimbrial protein combination 67-72p on hemagglutination of diphtheria bacilli grown under iron-limited conditions. Conversely, iron limitation inhibited adherence to glass and expression of electron-dense material on the bacterial surface. Lectin binding assays demonstrated a reduction in the number of sialic acid residues and an increase in d-mannose and d-galactose residues on the surfaces of both strains. Thus, iron exerts a regulatory role on adhesive properties of diphtheria bacilli, and low iron availability modulates the expression of C. diphtheriae surface carbohydrate moieties. The significant changes in the degree of lectin binding specific for d-mannose, d-galactose and sialic acid residues may have an effect on binding of host cells. The expression of dissimilar microbial virulence determinants may be coordinately controlled by common regulatory systems. For C. diphtheriae, the present results imply regulation of adherence and slime production as part of a global response to iron-limited environmental conditions that includes derepression of genes for the synthesis of cytotoxin and siderophores and for transport of the Fe(III)-siderophore complexes.


Journal of Biological Chemistry | 2004

Enzymatically Inactive trans-Sialidase from Trypanosoma cruzi Binds Sialyl and β-Galactopyranosyl Residues in a Sequential Ordered Mechanism

Adriane R. Todeschini; Wagner B. Dias; Murielle F. Girard; Jean-Michel Wieruszeski; Lucia Mendonça-Previato; José O. Previato

Host/parasite interaction mediated by carbohydrate/lectin recognition results in the attachment to and invasion of host cells and immunoregulation, enabling parasite replication and establishment of infection. Trypanosoma cruzi, the protozoan responsible for Chagas disease, expresses on its surface a family of enzymatically active and inactive trans-sialidases. The parasite uses the active trans-sialidase for glycoprotein sialylation in an unusual trans-glycosylation reaction. Inactive trans-sialidase is a sialic acid-binding lectin that costimulates host T cells through leucosialin (CD43) engagement. The co-mitogenic effect of trans-sialidase can be selectively abrogated by N-acetyllactosamine, suggesting the presence of an additional carbohydrate binding domain for galactosides, in addition to that for sialic acid. Here we investigated the interaction of inactive trans-sialidase in the presence of β-galactosides. By using NMR spectroscopy, we demonstrate that inactive trans-sialidase has a β-galactoside recognition site formed following a conformational switch induced by sialoside binding. Thus prior positioning of a sialyl residue is required for the β-galactoside interaction. When an appropriate sialic acid-containing molecule is available, both sialoside and β-galactoside are simultaneously accommodated in the inactive trans-sialidase binding pocket. This is the first report of a lectin recognizing two distinct ligands by a sequential ordered mechanism. This uncommon binding behavior may play an important role in several biological aspects of T. cruzi/host cell interaction and could shed more light into the catalytic mechanism of the sialic acid transfer reaction of enzymatically active trans-sialidase.


Infection and Immunity | 2001

Involvement of Fungal Cell Wall Components in Adhesion of Sporothrix schenckii to Human Fibronectin

Osana C. Lima; Camila C. Figueiredo; José O. Previato; Lucia Mendonça-Previato; Verônica Morandi; Leila M. Lopes Bezerra

ABSTRACT Systemic sporotrichosis is an emerging infection potentially fatal for immunocompromised patients. Adhesion to extracellular matrix proteins is thought to play a crucial role in invasive fungal diseases. Here we report studies of the adhesion of Sporothrix schenckii to the extracellular protein fibronectin (Fn). Both yeast cells and conidia of S. schenckii were able to adhere to Fn as detected by enzyme-linked immunosorbent binding assays. Adhesion of yeast cells to Fn is dose dependent and saturable.S. schenckii adheres equally well to 40-kDa and 120-kDa Fn proteolytic fragments. While adhesion to Fn was increased by Ca2+, inhibition assays demonstrated that it was not RGD dependent. A carbohydrate-containing cell wall neutral fraction blocked up to 30% of the observed adherence for the yeast cells. The biochemical nature of this fraction suggests the participation of cell surface glycoconjugates in binding by their carbohydrate or peptide moieties. These results provide new data concerning S. schenckii adhesion mechanisms, which could be important in host-fungus interactions and the establishment of sporotrichosis.


Journal of Biological Chemistry | 1996

High Diversity in Mucin Genes and Mucin Molecules in Trypanosoma cruzi

Javier M. Di Noia; Guido D. Pollevick; Marcia T. Xavier; José O. Previato; Lucia Mendoça-Previato; Daniel O. Sánchez; Alberto C.C. Frasch

Mucins are highly O-glycosylated molecules which in mammalian cells accomplish essential functions, like cytoprotection and cell-cell interactions. In the protozoan parasite Trypanosoma cruzi, mucin-related glycoproteins have been shown to play a relevant role in the interaction with and invasion of host cells. We have previously reported a family of mucin-like genes in T. cruzi whose overall structure resembled that of mammalian mucin genes. We have now analyzed the relationship between these genes and mucin proteins. A monoclonal antibody specific for a mucin sugar epitope and a polyclonal serum directed to peptide epitopes in a MUC gene-encoded recombinant protein, detected identical bands in three out of seven strains of T. cruzi. Immunoprecipitation experiments confirmed these results. When expressed in eukaryotic cells, the MUC gene product is post-translationally modified, most likely, through extensive O-glycosylation. Gene sequencing showed that the central domains encoding the repeated sequences with the consensus T8KP2, varies in number from 1 to 10, and the number of Thr residues in each repeat could be 7, 8, or 10. A run of 16 to 18 Thr residues was present in some, but not all, MUC gene-derived sequences. Direct compositional analysis of mucin core proteins showed that Thr residues are much more frequent than Ser residues. The same fact occurs in MUC gene-derived protein sequences. Molecular mass determinations of the 35-kDa glycoproteins further extend the heterogeneity of the family to the natural mucin molecules. Difficulties in assigning each of the several MUC genes identified to a mucin product arise from the high diversity and partial sequence conservation of the members of this family.

Collaboration


Dive into the José O. Previato's collaboration.

Top Co-Authors

Avatar

Lucia Mendonça-Previato

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Adriane R. Todeschini

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Norton Heise

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Leonardo Freire-de-Lima

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Robin Wait

Public health laboratory

View shared research outputs
Top Co-Authors

Avatar

Christopher Jones

National Institute for Biological Standards and Control

View shared research outputs
Top Co-Authors

Avatar

George A. DosReis

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Luiz R. Travassos

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Orlando A. Agrellos

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Célio G. Freire-de-Lima

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge