José P. Faria
Argonne National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José P. Faria.
bioRxiv | 2016
Adam P. Arkin; Rick Stevens; Robert W. Cottingham; Sergei Maslov; Christopher S. Henry; Paramvir Dehal; Doreen Ware; Fernando Perez; Nomi L. Harris; Shane Canon; Michael W Sneddon; Matthew L Henderson; William J Riehl; Dan Gunter; Dan Murphy-Olson; Stephen Chan; Roy T Kamimura; Thomas S Brettin; Folker Meyer; Dylan Chivian; David J. Weston; Elizabeth M. Glass; Brian H. Davison; Sunita Kumari; Benjamin H Allen; Jason K. Baumohl; Aaron A. Best; Ben Bowen; Steven E. Brenner; Christopher C Bun
The U.S. Department of Energy Systems Biology Knowledgebase (KBase) is an open-source software and data platform designed to meet the grand challenge of systems biology — predicting and designing biological function from the biomolecular (small scale) to the ecological (large scale). KBase is available for anyone to use, and enables researchers to collaboratively generate, test, compare, and share hypotheses about biological functions; perform large-scale analyses on scalable computing infrastructure; and combine experimental evidence and conclusions that lead to accurate models of plant and microbial physiology and community dynamics. The KBase platform has (1) extensible analytical capabilities that currently include genome assembly, annotation, ontology assignment, comparative genomics, transcriptomics, and metabolic modeling; (2) a web-browser-based user interface that supports building, sharing, and publishing reproducible and well-annotated analyses with integrated data; (3) access to extensive computational resources; and (4) a software development kit allowing the community to add functionality to the system.
Nature Biotechnology | 2018
Adam P. Arkin; Robert W. Cottingham; Christopher S. Henry; Nomi L. Harris; Rick Stevens; Sergei Maslov; Paramvir Dehal; Doreen Ware; Fernando Perez; Shane Canon; Michael W Sneddon; Matthew L Henderson; William J Riehl; Dan Murphy-Olson; Stephen Chan; Roy T Kamimura; Sunita Kumari; Meghan M Drake; Thomas Brettin; Elizabeth M. Glass; Dylan Chivian; Dan Gunter; David J. Weston; Benjamin H Allen; Jason K. Baumohl; Aaron A. Best; Ben Bowen; Steven E. Brenner; Christopher C Bun; John-Marc Chandonia
Author(s): Arkin, Adam P; Cottingham, Robert W; Henry, Christopher S; Harris, Nomi L; Stevens, Rick L; Maslov, Sergei; Dehal, Paramvir; Ware, Doreen; Perez, Fernando; Canon, Shane; Sneddon, Michael W; Henderson, Matthew L; Riehl, William J; Murphy-Olson, Dan; Chan, Stephen Y; Kamimura, Roy T; Kumari, Sunita; Drake, Meghan M; Brettin, Thomas S; Glass, Elizabeth M; Chivian, Dylan; Gunter, Dan; Weston, David J; Allen, Benjamin H; Baumohl, Jason; Best, Aaron A; Bowen, Ben; Brenner, Steven E; Bun, Christopher C; Chandonia, John-Marc; Chia, Jer-Ming; Colasanti, Ric; Conrad, Neal; Davis, James J; Davison, Brian H; DeJongh, Matthew; Devoid, Scott; Dietrich, Emily; Dubchak, Inna; Edirisinghe, Janaka N; Fang, Gang; Faria, Jose P; Frybarger, Paul M; Gerlach, Wolfgang; Gerstein, Mark; Greiner, Annette; Gurtowski, James; Haun, Holly L; He, Fei; Jain, Rashmi; Joachimiak, Marcin P; Keegan, Kevin P; Kondo, Shinnosuke; Kumar, Vivek; Land, Miriam L; Meyer, Folker; Mills, Marissa; Novichkov, Pavel S; Oh, Taeyun; Olsen, Gary J; Olson, Robert; Parrello, Bruce; Pasternak, Shiran; Pearson, Erik; Poon, Sarah S; Price, Gavin A; Ramakrishnan, Srividya; Ranjan, Priya; Ronald, Pamela C; Schatz, Michael C; Seaver, Samuel MD; Shukla, Maulik; Sutormin, Roman A; Syed, Mustafa H; Thomason, James; Tintle, Nathan L; Wang, Daifeng; Xia, Fangfang; Yoo, Hyunseung; Yoo, Shinjae; Yu, Dantong
Advances in Bioinformatics | 2010
José P. Faria; Miguel Rocha; Rick Stevens; Christopher S. Henry
Reversibility constraints are one aspect of genome-scale metabolic models that has received significant attention recently. This study explores the impact of complete removal of reversibility constraints on the gene essentiality and growth phenotype predictions generated using three published genome-scale metabolic models: the iJR904, the iAF1260, and the iBsu1103. In all three models, the accuracy in predicting essential genes declined significantly with the relaxation of reversibility constraints, while the accuracy in predicting nonessential genes increased only for the iJR904 and iAF1260 model. Additionally, the number of inactive reactions in all models declined substantially with the relaxation of the reversibility constraints. This study rapidly reveals the extent to which the reversibility constraints included in a metabolic model have been optimized, and it indicates those incorrect model predictions that may be repaired and those correct model predictions that may be broken by increasing the number of reversible reactions in a model.
Frontiers in Microbiology | 2016
José P. Faria; Ross Overbeek; Ronald C. Taylor; Neal Conrad; Veronika Vonstein; Anne Goelzer; Vincent Fromion; Miguel Rocha; Isabel Rocha; Christopher S. Henry
We introduce a manually constructed and curated regulatory network model that describes the current state of knowledge of transcriptional regulation of Bacillus subtilis. The model corresponds to an updated and enlarged version of the regulatory model of central metabolism originally proposed in 2008. We extended the original network to the whole genome by integration of information from DBTBS, a compendium of regulatory data that includes promoters, transcription factors (TFs), binding sites, motifs, and regulated operons. Additionally, we consolidated our network with all the information on regulation included in the SporeWeb and Subtiwiki community-curated resources on B. subtilis. Finally, we reconciled our network with data from RegPrecise, which recently released their own less comprehensive reconstruction of the regulatory network for B. subtilis. Our model describes 275 regulators and their target genes, representing 30 different mechanisms of regulation such as TFs, RNA switches, Riboswitches, and small regulatory RNAs. Overall, regulatory information is included in the model for ∼2500 of the ∼4200 genes in B. subtilis 168. In an effort to further expand our knowledge of B. subtilis regulation, we reconciled our model with expression data. For this process, we reconstructed the Atomic Regulons (ARs) for B. subtilis, which are the sets of genes that share the same “ON” and “OFF” gene expression profiles across multiple samples of experimental data. We show how ARs for B. subtilis are able to capture many sets of genes corresponding to regulated operons in our manually curated network. Additionally, we demonstrate how ARs can be used to help expand or validate the knowledge of the regulatory networks by looking at highly correlated genes in the ARs for which regulatory information is lacking. During this process, we were also able to infer novel stimuli for hypothetical genes by exploring the genome expression metadata relating to experimental conditions, gaining insights into novel biology.
Frontiers in Microbiology | 2016
José P. Faria; James J. Davis; Janaka N. Edirisinghe; Ronald C. Taylor; Pamela Weisenhorn; Robert Olson; Rick Stevens; Miguel Rocha; Isabel Rocha; Aaron A. Best; Matthew DeJongh; Nathan L. Tintle; Bruce Parrello; Ross Overbeek; Christopher S. Henry
Understanding gene function and regulation is essential for the interpretation, prediction, and ultimate design of cell responses to changes in the environment. An important step toward meeting the challenge of understanding gene function and regulation is the identification of sets of genes that are always co-expressed. These gene sets, Atomic Regulons (ARs), represent fundamental units of function within a cell and could be used to associate genes of unknown function with cellular processes and to enable rational genetic engineering of cellular systems. Here, we describe an approach for inferring ARs that leverages large-scale expression data sets, gene context, and functional relationships among genes. We computed ARs for Escherichia coli based on 907 gene expression experiments and compared our results with gene clusters produced by two prevalent data-driven methods: Hierarchical clustering and k-means clustering. We compared ARs and purely data-driven gene clusters to the curated set of regulatory interactions for E. coli found in RegulonDB, showing that ARs are more consistent with gold standard regulons than are data-driven gene clusters. We further examined the consistency of ARs and data-driven gene clusters in the context of gene interactions predicted by Context Likelihood of Relatedness (CLR) analysis, finding that the ARs show better agreement with CLR predicted interactions. We determined the impact of increasing amounts of expression data on AR construction and find that while more data improve ARs, it is not necessary to use the full set of gene expression experiments available for E. coli to produce high quality ARs. In order to explore the conservation of co-regulated gene sets across different organisms, we computed ARs for Shewanella oneidensis, Pseudomonas aeruginosa, Thermus thermophilus, and Staphylococcus aureus, each of which represents increasing degrees of phylogenetic distance from E. coli. Comparison of the organism-specific ARs showed that the consistency of AR gene membership correlates with phylogenetic distance, but there is clear variability in the regulatory networks of closely related organisms. As large scale expression data sets become increasingly common for model and non-model organisms, comparative analyses of atomic regulons will provide valuable insights into fundamental regulatory modules used across the bacterial domain.
3 Biotech | 2015
José P. Faria; Janaka N. Edirisinghe; James J. Davis; Terrence Disz; Anna Hausmann; Christopher S. Henry; Robert Olson; Ross Overbeek; Gordon D. Pusch; Maulik Shukla; Veronika Vonstein; Alice R. Wattam
Abstract For many scientific applications, it is highly desirable to be able to compare metabolic models of closely related genomes. In this short report, we attempt to raise awareness to the fact that taking annotated genomes from public repositories and using them for metabolic model reconstructions is far from being trivial due to annotation inconsistencies. We are proposing a protocol for comparative analysis of metabolic models on closely related genomes, using fifteen strains of genus Brucella, which contains pathogens of both humans and livestock. This study lead to the identification and subsequent correction of inconsistent annotations in the SEED database, as well as the identification of 31 biochemical reactions that are common to Brucella, which are not originally identified by automated metabolic reconstructions. We are currently implementing this protocol for improving automated annotations within the SEED database and these improvements have been propagated into PATRIC, Model-SEED, KBase and RAST. This method is an enabling step for the future creation of consistent annotation systems and high-quality model reconstructions that will support in predicting accurate phenotypes such as pathogenicity, media requirements or type of respiration.
bioRxiv | 2018
Christian Lieven; Moritz Emanuel Beber; Brett G. Olivier; Frank Bergmann; Meric Ataman; Parizad Babaei; Jennifer A. Bartell; Lars M. Blank; Siddharth Chauhan; Kevin Correia; Christian Diener; Andreas Dräger; Birgitta E. Ebert; Janaka N. Edirisinghe; José P. Faria; Adam M. Feist; Georgios Fengos; Ronan M. T. Fleming; Beatriz Garćıa-Jiménez; Vassily Hatzimanikatis; Wout van Helvoirt; Christopher S. Henry; Henning Hermjakob; Markus Herrgard; Hyun Uk Kim; Zachary A. King; Jasper J. Koehorst; Steffen Klamt; Edda Klipp; Meiyappan Lakshmanan
Several studies have shown that neither the formal representation nor the functional requirements of genome-scale metabolic models (GEMs) are precisely defined. Without a consistent standard, comparability, reproducibility, and interoperability of models across groups and software tools cannot be guaranteed. Here, we present memote (https://github.com/opencobra/memote) an open-source software containing a community-maintained, standardized set of metabolic model tests. The tests cover a range of aspects from annotations to conceptual integrity and can be extended to include experimental datasets for automatic model validation. In addition to testing a model once, memote can be configured to do so automatically, i.e., while building a GEM. A comprehensive report displays the model’s performance parameters, which supports informed model development and facilitates error detection. Memote provides a measure for model quality that is consistent across reconstruction platforms and analysis software and simplifies collaboration within the community by establishing workflows for publicly hosted and version controlled models.
Plant Science | 2018
James G. Jeffryes; Samuel M. D. Seaver; José P. Faria; Christopher S. Henry
The vast diversity of plant natural products is a powerful indication of the biosynthetic capacity of plant metabolism. Synthetic biology seeks to capitalize on this ability by understanding and reconfiguring the biosynthetic pathways that generate this diversity to produce novel products with improved efficiency. Here we review the algorithms and databases that presently support the design and manipulation of metabolic pathways in plants, starting from metabolic models of native biosynthetic pathways, progressing to novel combinations of known reactions, and finally proposing new reactions that may be carried out by existing enzymes. We show how these tools are useful for proposing new pathways as well as identifying side reactions that may affect engineering goals.
Archive | 2018
Janaka N. Edirisinghe; José P. Faria; Nomi L. Harris; Benjamin H Allen; Christopher S. Henry
Genome-scale metabolic models (GEMs) generated from automated reconstruction pipelines often lack accuracy due to the need for extensive gapfilling and the inference of periphery metabolic pathways based on lower-confidence annotations. The central carbon pathways and electron transport chains are among the most well-understood regions of microbial metabolism, and these pathways contribute significantly toward defining cellular behavior and growth conditions. Thus, it is often useful to construct a simplified core metabolic model (CMM) that is comprised of only the high-confidence central pathways. In this chapter, we discuss methods for producing core metabolic models (CMM) based on genome annotations. With its reduced scope compared to GEMs, CMM reconstruction focuses on accurate representation of the central metabolic pathways related to energy biosynthesis and accurate energy yield predictions. We demonstrate the reconstruction and analysis of CMMs using the DOE Systems Biology Knowledgebase (KBase). The complete workflow is available at http://kbase.us/core-models/.
Briefings in Bioinformatics | 2014
José P. Faria; Ross Overbeek; Fangfang Xia; Miguel Rocha; Isabel Rocha; Christopher S. Henry