Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José Pedro Castro is active.

Publication


Featured researches published by José Pedro Castro.


Redox biology | 2017

Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence

Annika Höhn; Daniela Weber; Tobias Jung; Christiane Ott; Martín Hugo; Bastian Kochlik; Richard Kehm; Jeannette König; Tilman Grune; José Pedro Castro

Aging is a complex phenomenon and its impact is becoming more relevant due to the rising life expectancy and because aging itself is the basis for the development of age-related diseases such as cancer, neurodegenerative diseases and type 2 diabetes. Recent years of scientific research have brought up different theories that attempt to explain the aging process. So far, there is no single theory that fully explains all facets of aging. The damage accumulation theory is one of the most accepted theories due to the large body of evidence found over the years. Damage accumulation is thought to be driven, among others, by oxidative stress. This condition results in an excess attack of oxidants on biomolecules, which lead to damage accumulation over time and contribute to the functional involution of cells, tissues and organisms. If oxidative stress persists, cellular senescence is a likely outcome and an important hallmark of aging. Therefore, it becomes crucial to understand how senescent cells function and how they contribute to the aging process. This review will cover cellular senescence features related to the protein pool such as morphological and molecular hallmarks, how oxidative stress promotes protein modifications, how senescent cells cope with them by proteostasis mechanisms, including antioxidant enzymes and proteolytic systems. We will also highlight the nutritional status of senescent cells and aged organisms (including human clinical studies) by exploring trace elements and micronutrients and on their importance to develop strategies that might increase both, life and health span and postpone aging onset.


Free Radical Biology and Medicine | 2012

Carbonylation of the cytoskeletal protein actin leads to aggregate formation

José Pedro Castro; Christiane Ott; Tobias Jung; Tilman Grune; Henrique Almeida

Protein carbonylation is a common feature in cells exposed to oxidants, leading to protein dysfunction and protein aggregates. Actin, which is involved in manifold cellular processes, is a sensitive target protein to this oxidative modification. T-cell proteins have been widely described to be sensitive targets to oxidative modifications. The aim of this work was to test whether the formation of protein aggregates contributes to the impaired proliferation of Jurkat cells after oxidative stress and to test whether actin as a major oxidation-prone cytoskeletal protein is an integral part of such protein aggregates. We used Jurkat cells, an established T-cell model, showing the formation of actin aggregates along with the decrease of proteasome activity. The presence of these protein aggregates inhibits Jurkat proliferation even under conditions not influencing viability. As a conclusion, we propose that an oxidative environment leads to actin aggregates contributing to T-cell cellular functional impairment.


Free Radical Biology and Medicine | 2016

The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome.

Sandra Reeg; Tobias Jung; José Pedro Castro; Kelvin J.A. Davies; Andrea Henze; Tilman Grune

One hallmark of aging is the accumulation of protein aggregates, promoted by the unfolding of oxidized proteins. Unraveling the mechanism by which oxidized proteins are degraded may provide a basis to delay the early onset of features, such as protein aggregate formation, that contribute to the aging phenotype. In order to prevent aggregation of oxidized proteins, cells recur to the 20S proteasome, an efficient turnover proteolysis complex. It has previously been shown that upon oxidative stress the 26S proteasome, another form, dissociates into the 20S form. A critical player implicated in its dissociation is the Heat Shock Protein 70 (Hsp70), which promotes an increase in free 20S proteasome and, therefore, an increased capability to degrade oxidized proteins. The aim of this study was to test whether or not Hsp70 is involved in cooperating with the 20S proteasome for a selective degradation of oxidatively damaged proteins. Our results demonstrate that Hsp70 expression is induced in HT22 cells as a result of mild oxidative stress conditions. Furthermore, Hsp70 prevents the accumulation of oxidized proteins and directly promotes their degradation by the 20S proteasome. In contrast the expression of the Heat shock cognate protein 70 (Hsc70) was not changed in recovery after oxidative stress and Hsc70 has no influence on the removal of oxidatively damaged proteins. We were able to demonstrate in HT22 cells, in brain homogenates from 129/SV mice and in vitro, that there is an increased interaction of Hsp70 with oxidized proteins, but also with the 20S proteasome, indicating a role of Hsp70 in mediating the interaction of oxidized proteins with the 20S proteasome. Thus, our data clearly implicate an involvement of Hsp70 oxidatively damaged protein degradation by the 20S proteasome.


Redox biology | 2017

Proteostasis, oxidative stress and aging

Ioanna Korovila; Martín Hugo; José Pedro Castro; Daniela Weber; Annika Höhn; Tilman Grune; Tobias Jung

The production of reactive species is an inevitable by-product of metabolism and thus, life itself. Since reactive species are able to damage cellular structures, especially proteins, as the most abundant macromolecule of mammalian cells, systems are necessary which regulate and preserve a functional cellular protein pool, in a process termed “proteostasis”. Not only the mammalian protein pool is subject of a constant turnover, organelles are also degraded and rebuild. The most important systems for these removal processes are the “ubiquitin-proteasomal system” (UPS), the central proteolytic machinery of mammalian cells, mainly responsible for proteostasis, as well as the “autophagy-lysosomal system”, which mediates the turnover of organelles and large aggregates. Many age-related pathologies and the aging process itself are accompanied by a dysregulation of UPS, autophagy and the cross-talk between both systems. This review will describe the sources and effects of oxidative stress, preservation of cellular protein- and organelle-homeostasis and the effects of aging on proteostasis in mammalian cells.


Free Radical Biology and Medicine | 2017

4-Hydroxynonenal (HNE) modified proteins in metabolic diseases.

José Pedro Castro; Tobias Jung; Tilman Grune; Werner Siems

Abstract 4‐Hydroxynonenal (HNE) is one of the quantitatively most important products of lipid peroxidation. Due to its high toxicity it is quickly metabolized, however, a small share of HNE avoids enzymatic detoxification and reacts with biomolecules including proteins. The formation of HNE‐protein‐adducts is one of the accompanying processes in oxidative stress or redox disbalance. The modification of proteins might occur at several amino acids side chains, leading to a variety of products and having effects on the protein function and fate. This review summarizes current knowledge on the formation of HNE‐modified proteins, their fate in mammalian cells and their potential role as a damaging agents during oxidative stress. Furthermore, the potential of HNE‐modified proteins as biomarkers for several diseases are highlighted. Highlights4‐Hydroxynonenal (HNE) forms protein adducts during oxidative stress.HNE modification occurs at several amino acids side chains in a variety of proteins.Reaction with HNE affects function and fate of modified proteins.HNE‐modified proteins might act as biomarkers.


Journal of Proteomics | 2013

Actin carbonylation: from cell dysfunction to organism disorder.

José Pedro Castro; Tobias Jung; Tilman Grune; Henrique Almeida

Protein carbonylation is an important event in the context of proteostasis because of its frequency, non-enzymatic nature and irreversible effects. The carbonylation of proteins disturbs their function and leads to protein aggregates, which may precede cellular senescence and cell death. Actin, an evolutionarily conserved cytoskeletal protein that is involved in important cellular processes, is one of the proteins most susceptible to carbonylation. Conditions resulting in oxidative stress are likely to lead to its carbonylation, loss of function and aggregate formation. In this review, we summarise actin susceptibility to carbonylation, as verified in cell free extracts, cell lines and animal models, and review its fate through the activation of cell mechanisms aimed at removing damaged proteins. Their insufficient activity may underlie age-related diseases and the ageing process. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.


Biological Chemistry | 2016

The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction.

José Pedro Castro; Tilman Grune; Bodo Speckmann

Abstract White adipose tissue (WAT) is actively involved in the regulation of whole-body energy homeostasis via storage/release of lipids and adipokine secretion. Current research links WAT dysfunction to the development of metabolic syndrome (MetS) and type 2 diabetes (T2D). The expansion of WAT during oversupply of nutrients prevents ectopic fat accumulation and requires proper preadipocyte-to-adipocyte differentiation. An assumed link between excess levels of reactive oxygen species (ROS), WAT dysfunction and T2D has been discussed controversially. While oxidative stress conditions have conclusively been detected in WAT of T2D patients and related animal models, clinical trials with antioxidants failed to prevent T2D or to improve glucose homeostasis. Furthermore, animal studies yielded inconsistent results regarding the role of oxidative stress in the development of diabetes. Here, we discuss the contribution of ROS to the (patho)physiology of adipocyte function and differentiation, with particular emphasis on sources and nutritional modulators of adipocyte ROS and their functions in signaling mechanisms controlling adipogenesis and functions of mature fat cells. We propose a concept of ROS balance that is required for normal functioning of WAT. We explain how both excessive and diminished levels of ROS, e.g. resulting from over supplementation with antioxidants, contribute to WAT dysfunction and subsequently insulin resistance.


Biology of Reproduction | 2015

Antioxidant Supplementation Modulates Age-Related Placental Bed Morphology and Reproductive Outcome in Mice

Elisabete Silva; Ana Isabel Soares; Filipe Costa; José Pedro Castro; Liliana Matos; Henrique Almeida

ABSTRACT The number of women who delay their first childbirth is increasing. This demographic shift is an important health issue because advanced maternal age is a risk factor for reproductive capacity loss and the occurrence of placental bed disorders that may lead to placenta abruption, preeclampsia, and placenta insufficiency. A redox imbalance status, resulting from the enhanced production of reactive oxygen species or their deficient neutralization, is proposed to occur in this setting. Thus, uterine redox status was evaluated in young (8- to 12-wk-old) and reproductively aged (38- to 42-wk-old) mice. In addition, it was hypothesized that specific dietary antioxidant supplementation would restore the balance and improve the reproductive outcome of aging female mice. To test this hypothesis, two different antioxidants, the nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor apocynin and the superoxide dismutase mimetic 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL), were added to the drinking water of female mice prior to and during pregnancy. Compared to younger females, uteri from reproductively aged nonpregnant mice exhibited areas of endometrial cystic dilation, increased level of NOX1 expression, and enhanced protein carbonylation, especially in the apical surface of the luminal epithelium. Both antioxidants decreased protein carbonylation level in the uterus of reproductively aged mice. When reproductively aged females became pregnant, the litter size was smaller and fetuses were heavier. The change was accompanied by a significant decrease in decidua thickness. Provision of apocynin significantly increased litter size and restored decidua thickness. Reproductively aged mice provided with TEMPOL did not evidence such benefits, but whereas apocynin normalized fetal birth weight, TEMPOL further increased it. These findings emphasize that uterine redox balance is important for reproductive success and suggest that age-related redox imbalance might be compensated by specific antioxidant supplementation.


Nutrients | 2018

Soybean Oil-Derived Poly-Unsaturated Fatty Acids Enhance Liver Damage in NAFLD Induced by Dietary Cholesterol

J Henkel; Eugenia Alfine; Juliana Saín; Korinna Jöhrens; Daniela Weber; José Pedro Castro; Jeannette König; Christin Stuhlmann; Madita Vahrenbrink; Wenke Jonas; André Kleinridders; Gerhard Püschel

While the impact of dietary cholesterol on the progression of atherosclerosis has probably been overestimated, increasing evidence suggests that dietary cholesterol might favor the transition from blunt steatosis to non-alcoholic steatohepatitis (NASH), especially in combination with high fat diets. It is poorly understood how cholesterol alone or in combination with other dietary lipid components contributes to the development of lipotoxicity. The current study demonstrated that liver damage caused by dietary cholesterol in mice was strongly enhanced by a high fat diet containing soybean oil-derived ω6-poly-unsaturated fatty acids (ω6-PUFA), but not by a lard-based high fat diet containing mainly saturated fatty acids. In contrast to the lard-based diet the soybean oil-based diet augmented cholesterol accumulation in hepatocytes, presumably by impairing cholesterol-eliminating pathways. The soybean oil-based diet enhanced cholesterol-induced mitochondrial damage and amplified the ensuing oxidative stress, probably by peroxidation of poly-unsaturated fatty acids. This resulted in hepatocyte death, recruitment of inflammatory cells, and fibrosis, and caused a transition from steatosis to NASH, doubling the NASH activity score. Thus, the recommendation to reduce cholesterol intake, in particular in diets rich in ω6-PUFA, although not necessary to reduce the risk of atherosclerosis, might be sensible for patients suffering from non-alcoholic fatty liver disease.


Frontiers in Endocrinology | 2018

Mitochondrial Chaperones in the Brain: Safeguarding Brain Health and Metabolism?

José Pedro Castro; Kristina Wardelmann; Tilman Grune; André Kleinridders

The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA) mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis), cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function) has been observed during aging, metabolic diseases such as type 2 diabetes and in neurodegenerative diseases such as Alzheimer’s (AD), Parkinson’s (PD) or even Huntington’s (HD) diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases.

Collaboration


Dive into the José Pedro Castro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martín Hugo

University of the Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge