Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose R. Loaiza is active.

Publication


Featured researches published by Jose R. Loaiza.


Molecular Ecology | 2008

Do mosquitoes filter the access of Plasmodium cytochrome b lineages to an avian host

Andrea B. Gager; Jose R. Loaiza; Donald C. Dearborn; Eldredge Bermingham

Many parasites show fidelity to a set of hosts in ecological time but not evolutionary time and the determinants of this pattern are poorly understood. Malarial parasites use vertebrate hosts for the asexual stage of their life cycle but use Dipteran hosts for the sexual stage. Despite the potential evolutionary importance of Dipteran hosts, little is known of their role in determining a parasites access to vertebrate hosts. Here, we use an avian malarial system in Panama to explore whether mosquitoes act as an access filter that limits the range of vertebrate hosts used by particular parasite lineages. We amplified and sequenced Plasmodium mitochondrial DNA (mtDNA) from Turdus grayi (clay‐coloured robin) and from mosquitoes at the same study site. We trapped and identified to species 123 141 female mosquitoes and completed polymerase chain reaction (PCR) screening for Plasmodium parasites in 435 pools of 20 mosquitoes per pool (8700 individuals total) spanning the 11 most common mosquito species. Our primers amplified nine Plasmodium lineages, whose sequences differed by 1.72%–10.0%. Phylogenetic analyses revealed partial clustering of lineages that co‐occurred in mosquito hosts. However PAN3 and PAN6, the two primary parasite lineages of T. grayi, exhibited sequence divergence of 8.59% and did not cluster in the phylogeny. We detected these two lineages exclusively in mosquitoes from different genera — PAN3 was found only in Culex (Melanoconion) ocossa, and PAN6 was found only in Aedeomyia squamipennis. Furthermore, each of these two parasite lineages co‐occurred in mosquitoes with other Plasmodium lineages that were not found in the vertebrate host T. grayi. Together, this evidence suggests that parasite–mosquito associations do not restrict the access of parasites to birds but instead may actually facilitate the switching of vertebrate hosts that occurs over evolutionary time.


Infection, Genetics and Evolution | 2012

Review of genetic diversity in malaria vectors (Culicidae: Anophelinae)

Jose R. Loaiza; Eldredge Bermingham; Oris I. Sanjur; Marilyn E. Scott; Sara A. Bickersmith; Jan E. Conn

We review previous studies on the genetic diversity of malaria vectors to highlight the major trends in population structure and demographic history. In doing so, we outline key information about molecular markers, sampling strategies and approaches to investigate the causes of genetic structure in Anopheles mosquitoes. Restricted gene flow due to isolation by distance and physical barriers to dispersal may explain the spatial pattern of current genetic diversity in some Anopheles species. Nonetheless, there is noteworthy disagreement among studies, perhaps due to variation in sampling methodologies, choice of molecular markers, and/or analytical approaches. More refined genealogical methods of population analysis allowing for the inclusion of the temporal component of genetic diversity facilitated the evaluation of the contribution of historical demographic processes to genetic structure. A common pattern of past unstable demography (i.e., historical fluctuation in the effective population size) by several Anopheles species, regardless of methodology (DNA markers), mosquito ecology (anthropophilic vs zoophilic), vector status (primary vs secondary) and geographical distribution, suggests that Pleistocene environmental changes were major drivers of divergence at population and species levels worldwide.


Journal of Medical Entomology | 2008

Species Composition and Distribution of Adult Anopheles (Diptera: Culicidae) in Panama

Jose R. Loaiza; Eldredge Bermingham; Marilyn E. Scott; José Rovira; Jan E. Conn

Abstract Anopheles (Diptera: Culicidae) species composition and distribution were studied using human landing catch data over a 35-yr period in Panama. Mosquitoes were collected from 77 sites during 228 field trips carried out by members of the National Malaria Eradication Service. Fourteen Anopheles species were identified. The highest average human biting rates were recorded from Anopheles (Nyssorhynchus) albimanus (Wiedemann) (9.8 bites/person/night) and Anopheles (Anopheles) punctimacula (Dyar and Knab) (6.2 bites/person/night). These two species were also the most common, present in 99.1 and 74.9%, respectively, of the sites. Anopheles (Nyssorhynchus) aquasalis (Curry) was encountered mostly in the indigenous Kuna Yala Comarca along the eastern Atlantic coast, where malaria case history and average human biting rate (9.3 bites/person/night) suggest a local role in malaria transmission. An. albimanus, An. punctimacula, and Anopheles (Anopheles) vestitipennis (Dyar and Knab) were more abundant during the rainy season (May–December), whereas An. aquasalis was more abundant in the dry season (January–April). Other vector species collected in this study were Anopheles (Kerteszia) neivai (Howard, Dyar, and Knab) and Anopheles (Anopheles) pseudopunctipennis s.l. (Theobald). High diversity of Anopheles species and six confirmed malaria vectors in endemic areas of Panama emphasize the need for more detailed studies to better understand malaria transmission dynamics.


American Journal of Tropical Medicine and Hygiene | 2010

Evidence for Pleistocene population divergence and expansion of Anopheles albimanus in southern Central America.

Jose R. Loaiza; Marilyn E. Scott; Eldredge Bermingham; José Rovira; Jan E. Conn

The micro-geographic structure of Anopheles albimanus was studied in southern Central America using partial sequences of the mtDNA cytochrome oxidase subunit I gene (COI). Analysis of molecular variance supported significant genetic structure between populations from Costa Rica and western Panama versus those from central-eastern Panama (Phi(CT) = 0.33), whereas the within group divergence was shallow and statistically insignificant (Phi(ST) = 0.08). Furthermore, a statistical parsimony network depicted three divergent groups of haplotypes that were not evenly distributed across the study area. Our findings are in partial agreement with previous studies, yet they do not support physical barriers to gene flow or contemporary isolation by distance in this region. Instead, three co-occurring groups of An. albimanus may be the result of multiple introductions, most likely caused by historical fragmentation and subsequent secondary contact. In addition, the molecular signature of population expansion of An. albimanus was detected in central-eastern Panama approximately 22,000 years ago (95% confidence interval [CI] 10,183-38,169). We hypothesize that the population structure of An. albimanus, as determined by our COI locus analysis, is the result of late Pleistocene climatic changes in northern South America.


Memorias Do Instituto Oswaldo Cruz | 2010

Confirmation of Anopheles (Anopheles) calderoni Wilkerson, 1991 (Diptera: Culicidae) in Colombia and Ecuador Through Molecular and Morphological Correlation with Topotypic Material

Ranulfo González; Nancy Carrejo; Richard C. Wilkerson; Joubert Alarcon; Joubert Alarcon-Ormasa; Fredy Ruiz; Ravinder Bhatia; Jose R. Loaiza; Yvonne-Marie Linton

The morphologically similar taxa Anopheles calderoni, Anopheles punctimacula, Anopheles malefactor and Anopheles guarao are commonly misidentified. Isofamilies collected in Valle de Cauca, Colombia, showed morphological characters most similar to An. calderoni, a species which has never previously been reported in Colombia. Although discontinuity of the postsubcostal pale spots on the costa (C) and first radial (R1) wing veins is purportedly diagnostic for An. calderoni, the degree of overlap of the distal postsubcostal spot on C and R1 were variable in Colombian specimens (0.003-0.024). In addition, in 98.2% of larvae, seta 1-X was located off the saddle and seta 3-C had 4-7 branches in 86.7% of specimens examined. Correlation of DNA sequences of the second internal transcribed spacer and mtDNA cytochrome c oxidase subunit I gene (COI) barcodes (658 bp of the COI gene) generated from Colombian progeny material and wild-caught mosquitoes from Ecuador with those from the Peruvian type series of An. calderoni confirmed new country records. DNA barcodes generated for the closely related taxa, An. malefactor and An. punctimacula are also presented for the first time. Examination of museum specimens at the University of the Valle, Colombia, revealed the presence of An. calderoni in inland localities across Colombia and at elevations up to 1113 m.


Molecular Phylogenetics and Evolution | 2010

Late Pleistocene environmental changes lead to unstable demography and population divergence of Anopheles albimanus in the northern Neotropics

Jose R. Loaiza; Marilyn E. Scott; Eldredge Bermingham; Oris I. Sanjur; Richard C. Wilkerson; José Rovira; Lina A. Gutiérrez; Margarita M. Correa; Mario J. Grijalva; Lotty Birnberg; Sara A. Bickersmith; Jan E. Conn

We investigated the historical demography of Anopheles albimanus using mosquitoes from five countries and three different DNA regions, the mitochondrial cytochrome oxidase subunit I gene (COI), the single copy nuclear white gene and the ribosomal internal transcribed spacer two (ITS2). All the molecular markers supported the taxonomic status of a single species of An. albimanus. Furthermore, agreement between the COI and the white genes suggested a scenario of Pleistocene geographic fragmentation (i.e., population contraction) and subsequent range expansion across southern Central America.


PLOS Neglected Tropical Diseases | 2015

Geographic Expansion of the Invasive Mosquito Aedes albopictus across Panama—Implications for Control of Dengue and Chikungunya Viruses

Matthew J. Miller; Jose R. Loaiza

The Asian tiger mosquito, Aedes (Stegomyia) albopictus, is an invasive species that has expanded its territory to over 40% of the earth’s terrestrial landmass in the last 30 years [1]. Ae. albopictus is an efficient vector of all serotypes of dengue, a disease that has increased in frequency over the past 30 years in the Americas [2], where it represents an annual cost of 2,100,000,000 USD per year [3]. This mosquito is also an efficient vector of the three genotypes of Chikungunya virus, a worldwide emerging pathogen that causes fever, fatigue, and joint swelling in humans. Since 2006, Chikungunya outbreaks have been increasingly recorded outside the virus’s native range in tropical Africa, perhaps because of a mutation in the virus’s envelope gene, which increases the replication and dissemination capacity of the virus in Ae. albopictus [4]. During the second quarter of 2014, Chikungunya has been detected throughout much of the Americas, with major outbreaks occurring in several Caribbean nations, and local transmission confirmed or suspected in the United States, Panama, Venezuela, Peru, and Chile, creating an imminent threat for humans throughout the Americas, who have no prior exposure to this infection [5]. The first cases of Chikungunya disease in Panama were reported in May 2014, occurring in nonresidents who most likely picked up the virus in their Caribbean countries of origin. On 23 July 2014, Panama’s health authority reported autochthonous transmission of Chikungunya virus. Coincidentally, the earliest cases involved patients located in Juan Diaz, an urban area on the eastern outskirts of Panama City, where the first specimen of invasive Ae. albopictus was collected in 2002. Ae. albopictus has expanded across much of Panama since that time, yet to date, no information exists about the degree of expansion or about the factors contributing to the geographic expansion of this important mosquito vector across Panama. Here, we map the temporal expansion of Ae. albopictus, use species distribution models to determine the ecological and nonecological factors associated with its expansion, and comment on the implications for vector and disease control programs in Panama and elsewhere in the American tropics.


PLOS ONE | 2013

Mosquito-host interactions during and after an outbreak of equine viral encephalitis in Eastern Panama.

Wayra G. Navia-Gine; Jose R. Loaiza; Matthew J. Miller

Mosquito blood meals provide information about the feeding habits and host preference of potential arthropod-borne disease vectors. Although mosquito-borne diseases are ubiquitous in the Neotropics, few studies in this region have assessed patterns of mosquito-host interactions, especially during actual disease outbreaks. Based on collections made during and after an outbreak of equine viral encephalitis, we identified the source of 338 blood meals from 10 species of mosquitoes from Aruza Abajo, a location in Darien province in eastern Panama. A PCR based method targeting three distinct mitochondrial targets and subsequent DNA sequencing was used in an effort to delineate vector-host relationships. At Aruza Abajo, large domesticated mammals dominated the assemblage of mosquito blood meals while wild bird and mammal species represented only a small portion of the blood meal pool. Most mosquito species fed on a variety of hosts; foraging index analysis indicates that eight of nine mosquito species utilize hosts at similar proportions while a stochastic model suggests dietary overlap among species was greater than would be expected by chance. The results from our null-model analysis of mosquito diet overlap are consistent with the hypothesis that in landscapes where large domestic animals dominate the local biomass, many mosquito species show little host specificity, and feed upon hosts in proportion to their biomass, which may have implications for the role of livestocking patterns in vector-borne disease ecology.


Parasitology Research | 2013

Seasonal pattern of avian Plasmodium-infected mosquitoes and implications for parasite transmission in central Panama.

Jose R. Loaiza; Matthew J. Miller

Aedeomyia squamipennis and Culex (Melanoconion) ocossa, two ubiquitous Neotropical mosquito species, are likely involved in the transmission of several bird pathogens in Gamboa, central Panama. However, knowledge on their eco-epidemiological profiles is still incomplete. Our goal in this study was to investigate temporal trends of vector density and their relationship with avian plasmodia prevalence. This information is central to identifying the risk posed by each vector species to the avian community locally. We found that A. squamipennis maintains stable population size across climatic seasons and thus maybe a more efficient vector of avian malaria than C. ocossa. In contrast, C. ocossa, which undergoes considerable population expansion in the rainy season and contraction in the dry season, is likely only an important avian malaria vector during part of the year. This is consistent with the larger number of parasite isolations and Plasmodium cyt b lineages recovered from A. squamipennis than from C. ocossa and might be explained by marked differences in their seasonality and host-feeding preferences. More Plasmodium PCR testing in mosquito communities from other areas of Panama might reveal additional vectors of avian plasmodia.


Parasites & Vectors | 2013

Phylogeography of the neotropical Anopheles triannulatus complex (Diptera: Culicidae) supports deep structure and complex patterns

Marta Moreno; Sara A. Bickersmith; Wesley Harlow; Jessica Hildebrandt; Sascha N. McKeon; Teresa Fernandes Silva-do-Nascimento; Jose R. Loaiza; Freddy Ruiz; Ricardo Lourenço-de-Oliveira; Maria Anice Mureb Sallum; Eduardo Sterlino Bergo; Gary N. Fritz; Richard C. Wilkerson; Yvonne M. Linton; María Julia Dantur Juri; Yadira Rangel; Marinete Marins Póvoa; Lina A. Gutiérrez-Builes; Margarita M. Correa; Jan E. Conn

BackgroundThe molecular phylogenetic relationships and population structure of the species of the Anopheles triannulatus complex: Anopheles triannulatus s.s., Anopheles halophylus and the putative species Anopheles triannulatus C were investigated.MethodsThe mitochondrial COI gene, the nuclear white gene and rDNA ITS2 of samples that include the known geographic distribution of these taxa were analyzed. Phylogenetic analyses were performed using Bayesian inference, Maximum parsimony and Maximum likelihood approaches.ResultsEach data set analyzed septely yielded a different topology but none provided evidence for the seption of An. halophylus and An. triannulatus C, consistent with the hypothesis that the two are undergoing incipient speciation. The phylogenetic analyses of the white gene found three main clades, whereas the statistical parsimony network detected only a single metapopulation of Anopheles triannulatus s.l. Seven COI lineages were detected by phylogenetic and network analysis. In contrast, the network, but not the phylogenetic analyses, strongly supported three ITS2 groups. Combined data analyses provided the best resolution of the trees, with two major clades, Amazonian (clade I) and trans-Andean + Amazon Delta (clade II). Clade I consists of multiple subclades: An. halophylus + An. triannulatus C; trans-Andean Venezuela; central Amazonia + central Bolivia; Atlantic coastal lowland; and Amazon delta. Clade II includes three subclades: Panama; cis-Andean Colombia; and cis-Venezuela. The Amazon delta specimens are in both clades, likely indicating local sympatry. Spatial and molecular variance analyses detected nine groups, corroborating some of subclades obtained in the combined data analysis.ConclusionCombination of the three molecular markers provided the best resolution for differentiation within An. triannulatus s.s. and An. halophylus and C. The latest two species seem to be very closely related and the analyses performed were not conclusive regarding species differentiation. Further studies including new molecular markers would be desirable to solve this species status question. Besides, results of the study indicate a trans-Andean origin for An. triannulatus s.l. The potential implications for malaria epidemiology remain to be investigated.

Collaboration


Dive into the Jose R. Loaiza's collaboration.

Top Co-Authors

Avatar

Matthew J. Miller

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Eldredge Bermingham

Patricia and Phillip Frost Museum of Science

View shared research outputs
Top Co-Authors

Avatar

Jan E. Conn

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar

Oris I. Sanjur

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Celestino Aguilar

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Montira J Pongsiri

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Alvarez

Smithsonian Tropical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge