José R. Penadés
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José R. Penadés.
Journal of Bacteriology | 2001
Carme Cucarella; Cristina Solano; Jaione Valle; Beatriz Amorena; Iñigo Lasa; José R. Penadés
Identification of new genes involved in biofilm formation is needed to understand the molecular basis of strain variation and the pathogenic mechanisms implicated in chronic staphylococcal infections. A biofilm-producing Staphylococcus aureus isolate was used to generate biofilm-negative transposon (Tn917) insertion mutants. Two mutants were found with a significant decrease in attachment to inert surfaces (early adherence), intercellular adhesion, and biofilm formation. The transposon was inserted at the same locus in both mutants. This locus (bap [for biofilm associated protein]) encodes a novel cell wall associated protein of 2,276 amino acids (Bap), which shows global organizational similarities to surface proteins of gram-negative (Pseudomonas aeruginosa and Salmonella enterica serovar Typhi) and gram-positive (Enteroccocus faecalis) microorganisms. Baps core region represents 52% of the protein and consists of 13 successive nearly identical repeats, each containing 86 amino acids. bap was present in a small fraction of bovine mastitis isolates (5% of the 350 S. aureus isolates tested), but it was absent from the 75 clinical human S. aureus isolates analyzed. All staphylococcal isolates harboring bap were highly adherent and strong biofilm producers. In a mouse infection model bap was involved in pathogenesis, causing a persistent infection.
Applied and Environmental Microbiology | 2001
Alejandro Toledo-Arana; Jaione Valle; Cristina Solano; Marı́a Jesús Arrizubieta; Carme Cucarella; Marta Lamata; Beatriz Amorena; José Leiva; José R. Penadés; Iñigo Lasa
ABSTRACT The enterococcal surface protein, Esp, is a high-molecular-weight surface protein of unknown function whose frequency is significantly increased among infection-derived Enterococcus faecalisisolates. In this work, a global structural similarity was found between Bap, a biofilm-associated protein of Staphylococcus aureus, and Esp. Analysis of the relationship between the presence of the Esp-encoding gene (esp) and the biofilm formation capacity in E. faecalis demonstrated that the presence of the esp gene is highly associated (P < 0.0001) with the capacity of E. faecalis to form a biofilm on a polystyrene surface, since 93.5% of the E. faecalis esp-positive isolates were capable of forming a biofilm. Moreover, none of the E. faecalis esp-deficient isolates were biofilm producers. Depending on theE. faecalis isolate, insertional mutagenesis ofesp caused either a complete loss of the biofilm formation phenotype or no apparent phenotypic defect. Complementation studies revealed that Esp expression in an E. faecalis esp-deficient strain promoted primary attachment and biofilm formation on polystyrene and polyvinyl chloride plastic from urine collection bags. Together, these results demonstrate that (i) biofilm formation capacity is widespread among clinical E. faecalis isolates, (ii) the biofilm formation capacity is restricted to the E. faecalis strains harboringesp, and (iii) Esp promotes primary attachment and biofilm formation of E. faecalis on abiotic surfaces.
Molecular Microbiology | 2003
Jaione Valle; Alejandro Toledo-Arana; Carmen Berasain; Jean-Marc Ghigo; Beatriz Amorena; José R. Penadés; Iñigo Lasa
Staphylococcus aureus biofilm formation is associated with the production of the polysaccharide intercellular adhesin (PIA/PNAG), the product of the ica operon. The staphylococcal accessory regulator, SarA, is a central regulatory element that controls the production of S. aureus virulence factors. By screening a library of Tn917 insertions in a clinical S. aureus strain, we identified SarA as being essential for biofilm development. Non‐polar mutations of sarA in four genetically unrelated S. aureus strains decreased PIA/PNAG production and completely impaired biofilm development, both in steady state and flow conditions via an agr‐independent mechanism. Accordingly, real‐time PCR showed that the mutation in the sarA gene resulted in downregulation of the ica operon transcription. We also demonstrated that complete deletion of σB did not affect PIA/PNAG production and biofilm formation, although it slightly decreased ica operon transcription. Furthermore, the sarA‐σB double mutant showed a significant decrease of ica expression but an increase of PIA/PNAG production and biofilm formation compared to the sarA single mutant. We propose that SarA activates S. aureus development of biofilm by both enhancing the ica operon transcription and suppressing the transcription of either a protein involved in the turnover of PIA/PNAG or a repressor of its synthesis, whose expression would be σB‐dependent.
Infection and Immunity | 2004
Carme Cucarella; M. Ángeles Tormo; Carles Úbeda; M. Pilar Trotonda; Marta Monzón; Critòfol Peris; Beatriz Amorena; Iñigo Lasa; José R. Penadés
ABSTRACT Staphylococcus aureus is a common cause of intramammary infections, which frequently become chronic, associated with the ability of the bacteria to produce biofilm. Here, we report a relationship between the ability to produce chronic bovine mastitis and biofilm formation. We have classified bovine mastitis S. aureus isolates into three groups based on the presence of particular genetic elements required for biofilm formation: group 1 (ica+bap+), group 2 (ica+, bap negative), and group 3 (ica negative, bap negative). Overall, animals naturally infected with group 1 and 2 isolates had a lower milk somatic cell count than those infected with isolates of group 3. In addition, Bap-positive isolates were significantly more able to colonize and persist in the bovine mammary gland in vivo and were less susceptible to antibiotic treatments when forming biofilms in vitro. Analysis of the structural bap gene revealed the existence of alternate forms of expression of the Bap protein in S. aureus isolates obtained under field conditions throughout the animals life. The presence of anti-Bap antibodies in serum samples taken from animals with confirmed S. aureus infections indicated the production of Bap during infection. Furthermore, disruption of the ica operon in a bap-positive strain had no effect on in vitro biofilm formation, a finding which strongly suggested that Bap could compensate for the deficiency of the PIA/PNAG product (a biofilm matrix polysaccharide). Altogether, these results demonstrate that, in the bovine intramammary gland, the presence of Bap may facilitate a biofilm formation connected with the persistence of S. aureus.
Nature Reviews Microbiology | 2010
Richard P. Novick; Gail E. Christie; José R. Penadés
The phage-related chromosomal islands (PRCIs) were first identified in Staphylococcus aureus as highly mobile, superantigen-encoding genetic elements known as the S. aureus pathogenicity islands (SaPIs). These elements are characterized by a specific set of phage-related functions that enable them to use the phage reproduction cycle for their own transduction and inhibit phage reproduction in the process. SaPIs produce many phage-like infectious particles; their streptococcal counterparts have a role in gene regulation but may not be infectious. These elements therefore represent phage satellites or parasites, not defective phages. In this Review, we discuss the shared genetic content of PRCIs, their life cycle and their ability to be transferred across large phylogenetic distances.
Molecular Microbiology | 2005
Carles Úbeda; Elisa Maiques; Erwin Knecht; Iñigo Lasa; Richard P. Novick; José R. Penadés
Although mobile genetic elements have a crucial role in spreading pathogenicity‐determining genes among bacterial populations, environmental and genetic factors involved in the horizontal transfer of these genes are largely unknown. Here we show that SaPIbov1, a Staphylococcus aureus pathogenicity island that belongs to the growing family of these elements that are found in many strains, is induced to excise and replicate after SOS induction of at least three different temperate phages, 80α, φ11 and φ147, and is then packaged into phage‐like particles and transferred at high frequency. SOS induction by commonly used fluoroquinolone antibiotics, such as ciprofloxacin, also results in replication and high‐frequency transfer of this element, as well as of SaPI1, the prototypical island of S. aureus, suggesting that such antibiotics may have the unintended consequence of promoting the spread of bacterial virulence factors. Although the strains containing these prophages do not normally contain SaPIs, we have found that RF122‐1, the original SaPIbov1‐containing clinical isolate, contains a putative second pathogenicity island that is replicated after SOS induction, by antibiotic treatment, of the prophage(s) present in the strain. Although SaPIbov1 is not induced to replicate after SOS induction in this strain, it is transferred by the antibiotic‐activated phages. We conclude that SOS induction by therapeutic agents can promote the spread of staphylococcal virulence genes.
Molecular Microbiology | 2005
Cristina Latasa; Agnès Roux; Alejandro Toledo-Arana; Jean-Marc Ghigo; Carlos Gamazo; José R. Penadés; Iñigo Lasa
In environmental settings, biofilms represent the common way of life of microorganisms. Salmonella enterica serovar Enteritidis, the most frequent cause of gastroenteritis in developed countries, produces a biofilm whose matrix is mainly composed of curli fimbriae and cellulose. In contrast to other bacterial biofilms, no proteinaceous compound has been reported to participate in the formation of this matrix. Here, we report the discovery of BapA, a large cell‐surface protein required for biofilm formation by S. Enteritidis. Deletion of bapA caused the loss of the capacity to form a biofilm whereas the overexpression of a chromosomal copy of bapA increased the biofilm biomass formation. We provide evidence that overproduction of curli fimbriae and not cellulose can compensate for the biofilm deficiency of a bapA mutant strain. BapA is secreted through a type I protein secretion system (BapBCD) situated downstream of the bapA gene and was found to be loosely associated with the cell surface. Experiments with mixed bacterial populations positive or negative for BapA showed that BapA minus cells are not recruited into the biofilm matrix. The expression of bapA is coordinated with that of genes encoding curli fimbriae and cellulose, through the action of csgD. Studies on the contribution of BapA to S. Enteritidis pathogenesis revealed that orally inoculated animals with a bapA‐deficient strain survived longer than those inoculated with the wild‐type strain. Also, a bapA mutant strain showed a significantly lower colonization rate at the intestinal cell barrier and consequently a decreased efficiency for organ invasion compared with the wild‐type strain. Taken together, these data demonstrate that BapA contributes both to biofilm formation and invasion through the regular Salmonella infection route.
Journal of Bacteriology | 2009
Nekane Merino; Alejandro Toledo-Arana; Marta Vergara-Irigaray; Jaione Valle; Cristina Solano; Enrique Calvo; Juan Antonio López; Timothy J. Foster; José R. Penadés; Iñigo Lasa
The capacity of Staphylococcus aureus to form biofilms on host tissues and implanted medical devices is one of the major virulence traits underlying persistent and chronic infections. The matrix in which S. aureus cells are encased in a biofilm often consists of the polysaccharide intercellular adhesin (PIA) or poly-N-acetyl glucosamine (PNAG). However, surface proteins capable of promoting biofilm development in the absence of PIA/PNAG exopolysaccharide have been described. Here, we used two-dimensional nano-liquid chromatography and mass spectrometry to investigate the composition of a proteinaceous biofilm matrix and identified protein A (spa) as an essential component of the biofilm; protein A induced bacterial aggregation in liquid medium and biofilm formation under standing and flow conditions. Exogenous addition of synthetic protein A or supernatants containing secreted protein A to growth media induced biofilm development, indicating that protein A can promote biofilm development without being covalently anchored to the cell wall. Protein A-mediated biofilm formation was completely inhibited in a dose-dependent manner by addition of serum, purified immunoglobulin G, or anti-protein A-specific antibodies. A murine model of subcutaneous catheter infection unveiled a significant role for protein A in the development of biofilm-associated infections, as the amount of protein A-deficient bacteria recovered from the catheter was significantly lower than that of wild-type bacteria when both strains were used to coinfect the implanted medical device. Our results suggest a novel role for protein A complementary to its known capacity to interact with multiple immunologically important eukaryotic receptors.
Journal of Bacteriology | 2006
Elisa Maiques; Carles Úbeda; Susana Campoy; Noelia Salvador; Iñigo Lasa; Richard P. Novick; Jordi Barbé; José R. Penadés
Antibiotics that interfere with DNA replication and cell viability activate the SOS response. In Staphylococcus aureus, the antibiotic-induced SOS response promotes replication and high-frequency horizontal transfer of pathogenicity island-encoded virulence factors. Here we report that beta-lactams induce a bona fide SOS response in S. aureus, characterized by the activation of the RecA and LexA proteins, the two master regulators of the SOS response. Moreover, we show that beta-lactams are capable of triggering staphylococcal prophage induction in S. aureus lysogens. Consequently, and as previously described for SOS induction by commonly used fluoroquinolone antibiotics, beta-lactam-mediated phage induction also resulted in replication and high-frequency transfer of the staphylococcal pathogenicity islands, showing that such antibiotics may have the unintended consequence of promoting the spread of bacterial virulence factors.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Iñigo Lasa; Alejandro Toledo-Arana; Alexander Dobin; Maite Villanueva; I. R. de los Mozos; Marta Vergara-Irigaray; Victor Segura; Delphine Fagegaltier; José R. Penadés; Jaione Valle; Cristina Solano; Thomas R. Gingeras
RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs, antisense RNAs, long 5′ and 3′ untranslated regions, and alternative operon structures. Here, by applying deep RNA sequencing to both the long and short RNA fractions (<50 nucleotides) obtained from the major human pathogen Staphylococcus aureus, we have detected a collection of short RNAs that is generated genome-wide through the digestion of overlapping sense/antisense transcripts by RNase III endoribonuclease. At least 75% of sense RNAs from annotated genes are subject to this mechanism of antisense processing. Removal of RNase III activity reduces the amount of short RNAs and is accompanied by the accumulation of discrete antisense transcripts. These results suggest the production of pervasive but hidden antisense transcription used to process sense transcripts by means of creating double-stranded substrates. This process of RNase III-mediated digestion of overlapping transcripts can be observed in several evolutionarily diverse Gram-positive bacteria and is capable of providing a unique genome-wide posttranscriptional mechanism to adjust mRNA levels.