José Ramón López-Blanco
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José Ramón López-Blanco.
Nature | 2016
Robert K. Louder; Yuan He; José Ramón López-Blanco; Jie Fang; Pablo Chacón; Eva Nogales
The general transcription factor IID (TFIID) plays a central role in the initiation of RNA polymerase II (Pol II)-dependent transcription by nucleating pre-initiation complex (PIC) assembly at the core promoter. TFIID comprises the TATA-binding protein (TBP) and 13 TBP-associated factors (TAF1–13), which specifically interact with a variety of core promoter DNA sequences. Here we present the structure of human TFIID in complex with TFIIA and core promoter DNA, determined by single-particle cryo-electron microscopy at sub-nanometre resolution. All core promoter elements are contacted by subunits of TFIID, with TAF1 and TAF2 mediating major interactions with the downstream promoter. TFIIA bridges the TBP–TATA complex with lobe B of TFIID. We also present the cryo-electron microscopy reconstruction of a fully assembled human TAF-less PIC. Superposition of common elements between the two structures provides novel insights into the general role of TFIID in promoter recognition, PIC assembly, and transcription initiation.
Journal of Structural Biology | 2013
José Ramón López-Blanco; Pablo Chacón
Here, we employed the collective motions extracted from Normal Mode Analysis (NMA) in internal coordinates (torsional space) for the flexible fitting of atomic-resolution structures into electron microscopy (EM) density maps. The proposed methodology was validated using a benchmark of simulated cases, highlighting its robustness over the full range of EM resolutions and even over coarse-grained representations. A systematic comparison with other methods further showcased the advantages of this proposed methodology, especially at medium to lower resolutions. Using this method, computational costs and potential overfitting problems are naturally reduced by constraining the search in low-frequency NMA space, where covalent geometry is implicitly maintained. This method also effectively captures the macromolecular changes of a representative set of experimental test cases. We believe that this novel approach will extend the currently available EM hybrid methods to the atomic-level interpretation of large conformational changes and their functional implications.
Structure | 2008
Eva Torreira; Sudhakar Jha; José Ramón López-Blanco; Ernesto Arias-Palomo; Pablo Chacón; Cristina Cañas; Sylvia Ayora; Anindya Dutta; Oscar Llorca
Pontin and reptin belong to the AAA+ family, and they are essential for the structural integrity and catalytic activity of several chromatin remodeling complexes. They are also indispensable for the assembly of several ribonucleoprotein complexes, including telomerase. Here, we propose a structural model of the yeast pontin/reptin complex based on a cryo-electron microscopy reconstruction at 13 A. Pontin/reptin hetero-dodecamers were purified from in vivo assembled complexes forming a double ring. Two rings interact through flexible domains projecting from each hexamer, constituting an atypical asymmetric form of oligomerization. These flexible domains and the AAA+ cores reveal significant conformational changes when compared with the crystal structure of human pontin that generate enlarged channels. This structure of endogenously assembled pontin/reptin complexes is different than previously described structures, suggesting that pontin and reptin could acquire distinct structural states to regulate their broad functions as molecular motors and scaffolds for nucleic acids and proteins.
Structure | 2013
Eric Estrin; José Ramón López-Blanco; Pablo Chacón; Andreas Martin
The 26S proteasome is the major ATP-dependent protease in eukaryotes and thus involved in regulating a diverse array of vital cellular processes. Three subcomplexes form this massive degradation machine: the lid, the base, and the core. While assembly of base and core has been well-studied, the detailed molecular mechanisms involved in formation of the nine-subunit lid remain largely unknown. Here, we reveal that helices found at the C terminus of each lid subunit form a helical bundle that directs the ordered self-assembly of the lid subcomplex. Furthermore, we use an integrative modeling approach to gain critical insights into the bundle topology and provide an important structural framework for our biochemical data. We show that the helical bundle serves as a hub through which the last-added subunit Rpn12 monitors proper lid assembly before incorporation into the proteasome. Finally, we predict that the assembly of the COP9 signalosome depends on a similar helical bundle.
The EMBO Journal | 2009
D. Roeland Boer; José A. Ruiz-Masó; José Ramón López-Blanco; Alexander G Blanco; Mireia Vives-Llàcer; Pablo Chacón; Isabel Usón; F. Xavier Gomis-Rüth; Manuel Espinosa; Oscar Llorca; Gloria del Solar; Miquel Coll
RepB initiates plasmid rolling‐circle replication by binding to a triple 11‐bp direct repeat (bind locus) and cleaving the DNA at a specific distant site located in a hairpin loop within the nic locus of the origin. The structure of native full‐length RepB reveals a hexameric ring molecule, where each protomer has two domains. The origin‐binding and catalytic domains show a three‐layer α–β–α sandwich fold. The active site is positioned at one of the faces of the β‐sheet and coordinates a Mn2+ ion at short distance from the essential nucleophilic Y99. The oligomerization domains (ODs), each consisting of four α‐helices, together define a compact ring with a central channel, a feature found in ring helicases. The toroidal arrangement of RepB suggests that, similar to ring helicases, it encircles one of the DNA strands during replication to confer processivity to the replisome complex. The catalytic domains appear to be highly mobile with respect to ODs. This mobility may account for the adaptation of the protein to two distinct DNA recognition sites.
Nucleic Acids Research | 2014
José Ramón López-Blanco; José Ignacio Aliaga; Enrique S. Quintana-Ortí; Pablo Chacón
Normal mode analysis (NMA) in internal (dihedral) coordinates naturally reproduces the collective functional motions of biological macromolecules. iMODS facilitates the exploration of such modes and generates feasible transition pathways between two homologous structures, even with large macromolecules. The distinctive internal coordinate formulation improves the efficiency of NMA and extends its applicability while implicitly maintaining stereochemistry. Vibrational analysis, motion animations and morphing trajectories can be easily carried out at different resolution scales almost interactively. The server is versatile; non-specialists can rapidly characterize potential conformational changes, whereas advanced users can customize the model resolution with multiple coarse-grained atomic representations and elastic network potentials. iMODS supports advanced visualization capabilities for illustrating collective motions, including an improved affine-model-based arrow representation of domain dynamics. The generated all-heavy-atoms conformations can be used to introduce flexibility for more advanced modeling or sampling strategies. The server is free and open to all users with no login requirement at http://imods.chaconlab.org.
Current Opinion in Structural Biology | 2016
José Ramón López-Blanco; Pablo Chacón
The intrinsic flexibility of proteins and nucleic acids can be grasped from remarkably simple mechanical models of particles connected by springs. In recent decades, Elastic Network Models (ENMs) combined with Normal Model Analysis widely confirmed their ability to predict biologically relevant motions of biomolecules and soon became a popular methodology to reveal large-scale dynamics in multiple structural biology scenarios. The simplicity, robustness, low computational cost, and relatively high accuracy are the reasons behind the success of ENMs. This review focuses on recent advances in the development and application of ENMs, paying particular attention to combinations with experimental data. Successful application scenarios include large macromolecular machines, structural refinement, docking, and evolutionary conservation.
Bioinformatics | 2016
Erney Ramírez-Aportela; José Ramón López-Blanco; Pablo Chacón
UNLABELLED The prediction of protein-protein complexes from the structures of unbound components is a challenging and powerful strategy to decipher the mechanism of many essential biological processes. We present a user-friendly protein-protein docking server based on an improved version of FRODOCK that includes a complementary knowledge-based potential. The web interface provides a very effective tool to explore and select protein-protein models and interactively screen them against experimental distance constraints. The competitive success rates and efficiency achieved allow the retrieval of reliable potential protein-protein binding conformations that can be further refined with more computationally demanding strategies. AVAILABILITY AND IMPLEMENTATION The server is free and open to all users with no login requirement at http://frodock.chaconlab.org CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Journal of Computational Physics | 2013
José Ramón López-Blanco; Ruymán Reyes; José Ignacio Aliaga; Rosa M. Badia; Pablo Chacón; Enrique S. Quintana-Ortí
Abstract Normal modes in internal coordinates (IC) furnish an excellent way to model functional collective motions of macromolecular machines, but exhibit a high computational cost when applied to large-sized macromolecules. In this paper, we significantly extend the applicability of this approach towards much larger systems by effectively solving the computational bottleneck of these methods, the diagonalization step and associated large-scale eigenproblem, on a small cluster of nodes equipped with multicore technology. Our experiments show the superior performance of iterative Krylov-subspace methods for the solution of the dense generalized eigenproblems arising in these biological applications over more traditional direct solvers implemented on top of state-of-the-art libraries. The presented approach expedites the study of the collective conformational changes of large macromolecules opening a new window for exploring the functional motions of such relevant systems.
Wiley Interdisciplinary Reviews: Computational Molecular Science | 2015
José Ramón López-Blanco; Pablo Chacón
Cryo‐electron microscopy is a powerful technique for the determination of three‐dimensional (3D) structures of macromolecular machines, as it provides functional snapshots of biologically relevant complexes under near‐physiological in vitro conditions. In this study, we review the computational algorithms developed to build macromolecular models from the information encoded in cryo‐electron microscopy (EM) density maps. These modeling tools include fitting strategies to localize atomic structures into 3D maps, de novo methods to identify structural elements, and hybrid methods for the combination of multiple structural data from complementary biophysical techniques and other experimental sources. We also illustrate the power of EM‐derived models in the atomic‐level interpretation of the conformational changes of relevant macromolecular assemblies. WIREs Comput Mol Sci 2015, 5:62–81. doi: 10.1002/wcms.1199