Jose Reina
European Bioinformatics Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jose Reina.
Nature Structural & Molecular Biology | 2002
Jose Reina; Emmanuel Lacroix; Scott D. Hobson; Gregorio Fernández-Ballester; Vladimir Rybin; Markus S. Schwab; Luis Serrano; Cayetano Gonzalez
PDZ domains are small globular domains that recognize the last 4–7 amino acids at the C-terminus of target proteins. The specificity of the PDZ–ligand recognition is due to side chain–side chain interactions, as well as the positioning of an α-helix involved in ligand binding. We have used computer-aided protein design to produce mutant versions of a Class I PDZ domain that bind to novel Class I and Class II target sequences both in vitro and in vivo, thus providing an alternative to primary antibodies in western blotting, affinity chromatography and pull-down experiments. Our results suggest that by combining different backbone templates with computer-aided protein design, PDZ domains could be engineered to specifically recognize a large number of proteins.
Nature Communications | 2011
Jens Januschke; Salud Llamazares; Jose Reina; Cayetano Gonzalez
During asymmetric mitosis, both in male Drosophila germline stem cells and in mouse embryo neural progenitors, the mother centrosome is retained by the self-renewed cell; hence suggesting that mother centrosome inheritance might contribute to stemness. We test this hypothesis in Drosophila neuroblasts (NBs) tracing photo converted centrioles and a daughter-centriole-specific marker generated by cloning the Drosophila homologue of human Centrobin. Here we show that upon asymmetric mitosis, the mother centrosome is inherited by the differentiating daughter cell. Our results demonstrate maturation-dependent centrosome fate in Drosophila NBs and that the stemness properties of these cells are not linked to mother centrosome inheritance.
Current Biology | 2007
Hanne Varmark; Salud Llamazares; Elena Rebollo; Bodo Lange; Jose Reina; Heinz Schwarz; Cayetano Gonzalez
BACKGROUNDnCentrosomes, the major organizers of the microtubule network in most animal cells, are composed of centrioles embedded in a web of pericentriolar material (PCM). Recruitment and stabilization of PCM on the centrosome is a centriole-dependent function. Compared to the considerable number of PCM proteins known, the molecular characterization of centrioles is still very limited. Only a few centriolar proteins have been identified so far in Drosophila, most related to centriole duplication.nnnRESULTSnWe have cloned asterless (asl) and found that it encodes a 120 kD highly coiled-coil protein that is a constitutive pancentriolar and basal body component. Loss of asl function impedes the stabilization/maintenance of PCM at the centrosome. In embryos deficient for Asl, development is arrested right after fertilization. Asl shares significant homology with Cep 152, a protein described as a component of the human centrosome for which no functional data is yet available.nnnCONCLUSIONSnThe cloning of asl offers new insight into the molecular composition of Drosophila centrioles and a possible model for the role of its human homolog. In addition, the phenotype of asl-deficient flies reveals that a functional centrosome is required for Drosophila embryo development.
Nature Cell Biology | 2013
Jens Januschke; Jose Reina; Salud Llamazares; T. Bertran; Fabrizio Rossi; J. Roig; Cayetano Gonzalez
During interphase in Drosophila neuroblasts, the Centrobin (CNB)-positive daughter centriole retains pericentriolar material (PCM) and organizes an aster that is a key determinant of the orientation of cell division. Here we show that daughter centrioles depleted of CNB cannot fulfil this function whereas mother centrioles that carry ectopic CNB can. CNB co-precipitates with a set of centrosomal proteins that include γ-TUB, ANA2, CNN, SAS-4, ASL, DGRIP71, POLO and SAS-6. Following chemical inhibition of POLO or removal of three POLO phosphorylation sites present in CNB, the interphase microtubule aster is lost. These results demonstrate that centriolar CNB localization is both necessary and sufficient to enable centrioles to retain PCM and organize the interphase aster in Drosophila neuroblasts. They also reveal an interphase function for POLO in this process that seems to have co-opted part of the protein network involved in mitotic centrosome maturation.
PLOS Biology | 2004
Elena Rebollo; Salud Llamazares; Jose Reina; Cayetano Gonzalez
Previous data suggested that anastral spindles, morphologically similar to those found in oocytes, can assemble in a centrosome-independent manner in cells that contain centrosomes. It is assumed that the microtubules that build these acentrosomal spindles originate over the chromatin. However, the actual processes of centrosome-independent microtubule nucleation, polymerisation, and sorting have not been documented in centrosome-containing cells. We have identified two experimental conditions in which centrosomes are kept close to the plasma membrane, away from the nuclear region, throughout meiosis I in Drosophila spermatocytes. Time-lapse confocal microscopy of these cells labelled with fluorescent chimeras reveals centrosome-independent microtubule nucleation, growth, and sorting into a bipolar spindle array over the nuclear region, away from the asters. The onset of noncentrosomal microtubule nucleation is significantly delayed with respect to nuclear envelope breakdown and coincides with the end of chromosome condensation. It takes place in foci that are close to the membranes that ensheath the nuclear region, not over the condensed chromosomes. Metaphase plates are formed in these spindles, and, in a fraction of them, some degree of polewards chromosome segregation takes place. In these cells that contain both membrane-bound asters and an anastral spindle, the orientation of the cytokinesis furrow correlates with the position of the asters and is independent of the orientation of the spindle. We conclude that the fenestrated nuclear envelope may significantly contribute to the normal process of spindle assembly in Drosophila spermatocytes. We also conclude that the anastral spindles that we have observed are not likely to provide a robust back-up able to ensure successful cell division. We propose that these anastral microtubule arrays could be a constitutive component of wild-type spindles, normally masked by the abundance of centrosome-derived microtubules and revealed when asters are kept away. These observations are consistent with a model in which centrosomal and noncentrosomal microtubules contribute to the assembly and are required for the robustness of the cell division spindle in cells that contain centrosomes.
Philosophical Transactions of the Royal Society B | 2014
Jose Reina; Cayetano Gonzalez
A strong correlation between centrosome age and fate has been reported in some stem cells and progenitors that divide asymmetrically. In some cases, such stereotyped centrosome behaviour is essential to endow stemness to only one of the two daughters, whereas in other cases causality is still uncertain. Here, we present the different cell types in which correlated centrosome age and fate has been documented, review current knowledge on the underlying molecular mechanisms and discuss possible functional implications of this process.
PLOS ONE | 2013
Helena Santos; David Abia; Robert Janowski; Gulnahar B. Mortuza; Michela G. Bertero; Maı̈lys Boutin; Nayibe Guarı́n; Raul Mendez-Giraldez; Alfonso Nuñez; Juan G. Pedrero; Pilar Redondo; Sanz Ml; Silvia Speroni; Florian Teichert; Marta Bruix; José María Carazo; Cayetano Gonzalez; Jose Reina; José M. Valpuesta; Isabelle Vernos; Juan Carlos Zabala; Guillermo Montoya; Miquel Coll; Ugo Bastolla; Luis Serrano
Here we perform a large-scale study of the structural properties and the expression of proteins that constitute the human Centrosome. Centrosomal proteins tend to be larger than generic human proteins (control set), since their genes contain in average more exons (20.3 versus 14.6). They are rich in predicted disordered regions, which cover 57% of their length, compared to 39% in the general human proteome. They also contain several regions that are dually predicted to be disordered and coiled-coil at the same time: 55 proteins (15%) contain disordered and coiled-coil fragments that cover more than 20% of their length. Helices prevail over strands in regions homologous to known structures (47% predicted helical residues against 17% predicted as strands), and even more in the whole centrosomal proteome (52% against 7%), while for control human proteins 34.5% of the residues are predicted as helical and 12.8% are predicted as strands. This difference is mainly due to residues predicted as disordered and helical (30% in centrosomal and 9.4% in control proteins), which may correspond to alpha-helix forming molecular recognition features (α-MoRFs). We performed expression assays for 120 full-length centrosomal proteins and 72 domain constructs that we have predicted to be globular. These full-length proteins are often insoluble: Only 39 out of 120 expressed proteins (32%) and 19 out of 72 domains (26%) were soluble. We built or retrieved structural models for 277 out of 361 human proteins whose centrosomal localization has been experimentally verified. We could not find any suitable structural template with more than 20% sequence identity for 84 centrosomal proteins (23%), for which around 74% of the residues are predicted to be disordered or coiled-coils. The three-dimensional models that we built are available at http://ub.cbm.uam.es/centrosome/models/index.php.
Current Biology | 2015
Marco Gottardo; Giulia Pollarolo; Salud Llamazares; Jose Reina; Maria Giovanna Riparbelli; Giuliano Callaini; Cayetano Gonzalez
Sensory cilia are organelles that convey information to the cell from the extracellular environment. In vertebrates, ciliary dysfunction results in ciliopathies that in humans comprise a wide spectrum of developmental disorders. In Drosophila, sensory cilia are found only in the neurons of type I sensory organs, but ciliary dysfunction also has dramatic consequences in this organism because it impairs the mechanosensory properties of bristles and chaetae and leads to uncoordination, a crippling condition that causes lethality shortly after eclosion. The cilium is defined by the ciliary membrane, a protrusion of the cell membrane that envelops the core structure known as the axoneme, a microtubule array that extends along the cilium from the basal body. In vertebrates, basal body function requires centriolar distal and subdistal appendages and satellites. Because these structures are acquired through centriole maturation, only mother centrioles can serve as basal bodies. Here, we show that although centriole maturity traits are lacking in Drosophila, basal body fate is reserved to mother centrioles in Drosophila type I neurons. Moreover, we show that depletion of the daughter-centriole-specific protein Centrobin (CNB) enables daughter centrioles to dock on the cell membrane and to template an ectopic axoneme that, although structurally defective, protrudes out of the cell and is enveloped by a ciliary membrane. Conversely, basal body capability is inhibited in mother centrioles modified to carry CNB. These results reveal the crucial role of CNB in regulating basal body function in Drosophila ciliated sensory organs.
Open Biology | 2017
Fabrizio Rossi; Cristina Molnar; Kazuya Hashiyama; Jan P. Heinen; Judit Pampalona; Salud Llamazares; Jose Reina; Tomomi Hashiyama; Madhulika Rai; Giulia Pollarolo; Ismael Fernández‐Hernández; Cayetano Gonzalez
Using transgenic RNAi technology, we have screened over 4000 genes to identify targets to inhibit malignant growth caused by the loss of function of lethal(3)malignant brain tumour in Drosophila in vivo. We have identified 131 targets, which belong to a wide range of gene ontologies. Most of these target genes are not significantly overexpressed in mbt tumours hence showing that, rather counterintuitively, tumour-linked overexpression is not a good predictor of functional requirement. Moreover, we have found that most of the genes upregulated in mbt tumours remain overexpressed in tumour-suppressed double-mutant conditions, hence revealing that most of the tumour transcriptome signature is not necessarily correlated with malignant growth. One of the identified target genes is meiotic W68 (mei-W68), the Drosophila orthologue of the human cancer/testis gene Sporulation-specific protein 11 (SPO11), the enzyme that catalyses the formation of meiotic double-strand breaks. We show that Drosophila mei-W68/SPO11 drives oncogenesis by causing DNA damage in a somatic tissue, hence providing the first instance in which a SPO11 orthologue is unequivocally shown to have a pro-tumoural role. Altogether, the results from this screen point to the possibility of investigating the function of human cancer relevant genes in a tractable experimental model organism like Drosophila.
Journal of Cell Biology | 2018
Jose Reina; Marco Gottardo; Maria Giovanna Riparbelli; Salud Llamazares; Giuliano Callaini; Cayetano Gonzalez
Centrobin homologues identified in different species localize on daughter centrioles. In Drosophila melanogaster sensory neurons, Centrobin (referred to as CNB in Drosophila) inhibits basal body function. These data open the question of CNB’s role in spermatocytes, where daughter and mother centrioles become basal bodies. In this study, we report that in these cells, CNB localizes equally to mother and daughter centrioles and is essential for C-tubules to attain the right position and remain attached to B-tubules as well as for centrioles to grow in length. CNB appears to be dispensable for meiosis, but flagellum development is severely compromised in Cnb mutant males. Remarkably, three N-terminal POLO phosphorylation sites that are critical for CNB function in neuroblasts are dispensable for spermatogenesis. Our results underpin the multifunctional nature of CNB that plays different roles in different cell types in Drosophila, and they identify CNB as an essential component for C-tubule assembly and flagellum development in Drosophila spermatogenesis.