Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose Rojas is active.

Publication


Featured researches published by Jose Rojas.


Nature Biotechnology | 2003

High-throughput engineering of the mouse genome coupled withhigh-resolution expression analysis

David M. Valenzuela; Andrew J. Murphy; David Frendewey; Nicholas W. Gale; Aris N. Economides; Wojtek Auerbach; William Poueymirou; Niels C. Adams; Jose Rojas; Jason Yasenchak; Rostislav Chernomorsky; Marylene Boucher; Andrea L Elsasser; Lakeisha Esau; Jenny Zheng; Jennifer Griffiths; Xiaorong Wang; Hong Su; Yingzi Xue; Melissa G. Dominguez; Irene Noguera; Richard Torres; Lynn Macdonald; A. Francis Stewart; Thomas M. DeChiara; George D. Yancopoulos

One of the most effective approaches for determining gene function involves engineering mice with mutations or deletions in endogenous genes of interest. Historically, this approach has been limited by the difficulty and time required to generate such mice. We describe the development of a high-throughput and largely automated process, termed VelociGene, that uses targeting vectors based on bacterial artificial chromosomes (BACs). VelociGene permits genetic alteration with nucleotide precision, is not limited by the size of desired deletions, does not depend on isogenicity or on positive–negative selection, and can precisely replace the gene of interest with a reporter that allows for high-resolution localization of target-gene expression. We describe custom genetic alterations for hundreds of genes, corresponding to about 0.5–1.0% of the entire genome. We also provide dozens of informative expression patterns involving cells in the nervous system, immune system, vasculature, skeleton, fat and other tissues.*Note: In the author list of the AOP version of this article, the name of author Rostislav Chernomorsky was misspelled Rostislav Chernomorski. This has been corrected in the online and print versions of the article.


Nature Genetics | 2000

Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development.

Thomas M. DeChiara; Robert B. Kimble; William Poueymirou; Jose Rojas; Piotr Masiakowski; David M. Valenzuela; George D. Yancopoulos

Receptor tyrosine kinases often have critical roles in particular cell lineages by initiating signalling cascades in those lineages. Examples include the neural-specific TRK receptors, the VEGF and angiopoietin endothelial-specific receptors, and the muscle-specific MUSK receptor. Many lineage-restricted receptor tyrosine kinases were initially identified as ‘orphans’ homologous to known receptors, and only subsequently used to identify their unknown growth factors. Some receptor-tyrosine-kinase–like orphans still lack identified ligands as well as biological roles. Here we characterize one such orphan, encoded by Ror2 (ref. 12). We report that disruption of mouse Ror2 leads to profound skeletal abnormalities, with essentially all endochondrally derived bones foreshortened or misshapen, albeit to differing degrees. Further, we find that Ror2 is selectively expressed in the chondrocytes of all developing cartilage anlagen, where it essential during initial growth and patterning, as well as subsequently in the proliferating chondrocytes of mature growth plates, where it is required for normal expansion. Thus, Ror2 encodes a receptor-like tyrosine kinase that is selectively expressed in, and particularly important for, the chondrocyte lineage.


Journal of Clinical Investigation | 2011

Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy

Cathleen Lutz; Shingo Kariya; Sunita Patruni; Melissa Osborne; Don Liu; Christopher E. Henderson; Darrick K. Li; Livio Pellizzoni; Jose Rojas; David M. Valenzuela; Andrew J. Murphy; Margaret L. Winberg; Umrao R. Monani

Spinal muscular atrophy (SMA) is a common neuromuscular disorder in humans. In fact, it is the most frequently inherited cause of infant mortality, being the result of mutations in the survival of motor neuron 1 (SMN1) gene that reduce levels of SMN protein. Restoring levels of SMN protein in individuals with SMA is perceived to be a viable therapeutic option, but the efficacy of such a strategy once symptoms are apparent has not been determined. We have generated mice harboring an inducible Smn rescue allele and used them in a model of SMA to investigate the effects of turning on SMN expression at different time points during the course of the disease. Restoring SMN protein even after disease onset was sufficient to reverse neuromuscular pathology and effect robust rescue of the SMA phenotype. Importantly, our findings also indicated that there was a therapeutic window of opportunity from P4 through P8 defined by the extent of neuromuscular synapse pathology and the ability of motor neurons to respond to SMN induction, following which restoration of the protein to the organism failed to produce therapeutic benefit. Nevertheless, our results suggest that even in severe SMA, timely reinstatement of the SMN protein may halt the progression of the disease and serve as an effective postsymptomatic treatment.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Human endometriosis is associated with plasma cells and overexpression of B lymphocyte stimulator

Aniko Hever; Richard B. Roth; Peter Hevezi; Maria E. Marin; Jose A. Acosta; Hector Acosta; Jose Rojas; Rosa Herrera; Dimitri E. Grigoriadis; Evan White; Paul J. Conlon; Richard A. Maki; Albert Zlotnik

Endometriosis affects 10–20% of women of reproductive age and is associated with pelvic pain and infertility, and its pathogenesis is not well understood. We used genomewide transcriptional profiling to characterize endometriosis and found that it exhibits a gene expression signature consistent with an underlying autoimmune mechanism. Endometriosis lesions are characterized by the presence of abundant plasma cells, many of which produce IgM, and macrophages that produce BLyS/BAFF/TNFSF13B, a member of the TNF superfamily implicated in other autoimmune diseases. B lymphocyte stimulator (BLyS) protein was found elevated in the serum of endometriosis patients. These observations suggest a model for the pathology of endometriosis where BLyS-responsive plasma cells interact with retrograde menstrual tissues to give rise to endometriosis lesions.


Journal of Immunology | 2009

Direct Hematological Toxicity and Illegitimate Chromosomal Recombination Caused by the Systemic Activation of CreERT2

Atsuko Y. Higashi; Tomokatsu Ikawa; Masamichi Muramatsu; Aris N. Economides; Akira Niwa; Tomohiko Okuda; Andrew J. Murphy; Jose Rojas; Toshio Heike; Tatsutoshi Nakahata; Hiroshi Kawamoto; Toru Kita; Motoko Yanagita

The CreERT2 for conditional gene inactivation has become increasingly used in reverse mouse genetics, which enables temporal regulation of Cre activity using a mutant estrogen binding domain (ERT2) to keep Cre inactive until the administration of tamoxifen. In this study, we present the severe toxicity of ubiquitously expressed CreERT2 in adult mice and embryos. The toxicity of Cre recombinase or CreERT2 in vitro or in vivo organisms are still less sufficiently recognized considering the common use of Cre/loxP system, though the toxicity might compromise the phenotypic analysis of the gene of interest. We analyzed two independent lines in which CreERT2 is knocked-in into the Rosa26 locus (R26CreERT2 mice), and both lines showed thymus atrophy, severe anemia, and illegitimate chromosomal rearrangement in hematopoietic cells after the administration of tamoxifen, and demonstrated complete recovery of hematological toxicity in adult mice. In the hematopoietic tissues in R26CreERT2 mice, reduced proliferation and increased apoptosis was observed after the administration of tamoxifen. Flow cytometric analysis revealed that CreERT2 toxicity affected several hematopoietic lineages, and that immature cells in these lineages tend to be more sensitive to the toxicity. In vitro culturing of hematopoietic cells from these mice further demonstrated the direct toxicity of CreERT2 on growth and differentiation of hematopoietic cells. We further demonstrated the cleavage of the putative cryptic/pseudo loxP site in the genome after the activation of CreERT2 in vivo. We discussed how to avoid the misinterpretation of the experimental results from potential toxic effects due to the activated CreERT2.


Blood | 2011

Efficient differentiation and function of human macrophages in humanized CSF-1 mice

Chozhavendan Rathinam; William Poueymirou; Jose Rojas; Andrew J. Murphy; David M. Valenzuela; George D. Yancopoulos; Anthony Rongvaux; Elizabeth E. Eynon; Markus G. Manz; Richard A. Flavell

Humanized mouse models are useful tools to understand pathophysiology and to develop therapies for human diseases. While significant progress has been made in generating immunocompromised mice with a human hematopoietic system, there are still several shortcomings, one of which is poor human myelopoiesis. Here, we report that human CSF-1 knockin mice show augmented frequencies and functions of human myeloid cells. Insertion of human CSF1 into the corresponding mouse locus of Balb/c Rag2(-/-) γc(-/-) mice through VELOCIGENE technology resulted in faithful expression of human CSF-1 in these mice both qualitatively and quantitatively. Intra-hepatic transfer of human fetal liver derived hematopoietic stem and progenitor cells (CD34(+)) in humanized CSF-1 (CSF1(h/h)) newborn mice resulted in more efficient differentiation and enhanced frequencies of human monocytes/macrophages in the bone marrow, spleens, peripheral blood, lungs, liver and peritoneal cavity. Human monocytes/macrophages obtained from the humanized CSF-1 mice show augmented functional properties including migration, phagocytosis, activation and responses to LPS. Thus, humanized mice engineered to express human cytokines will significantly help to overcome the current technical challenges in the field. In addition, humanized CSF-1 mice will be a valuable experimental model to study human myeloid cell biology.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Conditionals by inversion provide a universal method for the generation of conditional alleles

Aris N. Economides; David Frendewey; Peter Yang; Melissa G. Dominguez; Anthony Dore; Ivan B. Lobov; Trikaldarshi Persaud; Jose Rojas; Joyce McClain; Peter Matthew Lengyel; Gustavo Droguett; Rostislav Chernomorsky; Sean Stevens; Wojtek Auerbach; Thomas M. DeChiara; William Pouyemirou; Joseph M. Cruz; Kieran Feeley; Ian A. Mellis; Jason Yasenchack; Sarah Hatsell; LiQin Xie; Esther Latres; Lily Huang; Yuhong Zhang; Evangelos Pefanis; Ron A. Deckelbaum; Susan D. Croll; Samuel Davis; David M. Valenzuela

Significance We describe conditional by inversion (COIN), a new design for conditional alleles that uses an optimized conditional gene trap module (COIN module) inserted into the target gene in an orientation opposite to the gene’s direction of transcription. Activation by Cre recombinase inverts the COIN module, resulting in expression of a reporter and termination of transcription, thereby inactivating the target gene while marking the cells where the conditional event has occurred. Creation of COIN alleles for more than 20 genes showed that it is a robust and universal method—applicable to any gene regardless of exon–intron structure—that overcomes the limitations of previous conditional approaches. Conditional mutagenesis is becoming a method of choice for studying gene function, but constructing conditional alleles is often laborious, limited by target gene structure, and at times, prone to incomplete conditional ablation. To address these issues, we developed a technology termed conditionals by inversion (COIN). Before activation, COINs contain an inverted module (COIN module) that lies inertly within the antisense strand of a resident gene. When inverted into the sense strand by a site-specific recombinase, the COIN module causes termination of the target gene’s transcription and simultaneously provides a reporter for tracking this event. COIN modules can be inserted into natural introns (intronic COINs) or directly into coding exons as part of an artificial intron (exonic COINs), greatly simplifying allele design and increasing flexibility over previous conditional KO approaches. Detailed analysis of over 20 COIN alleles establishes the reliability of the method and its broad applicability to any gene, regardless of exon–intron structure. Our extensive testing provides rules that help ensure success of this approach and also explains why other currently available conditional approaches often fail to function optimally. Finally, the ability to split exons using the COIN’s artificial intron opens up engineering modalities for the generation of multifunctional alleles.


PLOS ONE | 2015

Diverse Phenotypes and Specific Transcription Patterns in Twenty Mouse Lines with Ablated LincRNAs

Ka-Man Venus Lai; Guochun Gong; Amanda Atanasio; Jose Rojas; Joseph Quispe; Julita Posca; Derek White; Mei Huang; Daria Fedorova; Craig Grant; Lawrence Miloscio; Gustavo Droguett; William Poueymirou; Wojtek Auerbach; George D. Yancopoulos; David Frendewey; John L. Rinn; David M. Valenzuela

In a survey of 20 knockout mouse lines designed to examine the biological functions of large intergenic non-coding RNAs (lincRNAs), we have found a variety of phenotypes, ranging from perinatal lethality to defects associated with premature aging and morphological and functional abnormalities in the lungs, skeleton, and muscle. Each mutant allele carried a lacZ reporter whose expression profile highlighted a wide spectrum of spatiotemporal and tissue-specific transcription patterns in embryos and adults that informed our phenotypic analyses and will serve as a guide for future investigations of these genes. Our study shows that lincRNAs are a new class of encoded molecules that, like proteins, serve essential and important functional roles in embryonic development, physiology, and homeostasis of a broad array of tissues and organs in mammals.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Mice harboring the human SLC30A8 R138X loss-of-function mutation have increased insulin secretory capacity

Sandra Kleiner; Daniel Gomez; Bezawit Megra; Erqian Na; Ramandeep Bhavsar; Katie Cavino; Yurong Xin; Jose Rojas; Giselle Dominguez-Gutierrez; Brian Zambrowicz; Gaelle Carrat; Pauline Chabosseau; Ming Hu; Andrew J. Murphy; George D. Yancopoulos; Guy A. Rutter; Jesper Gromada

Significance The zinc transporter SLC30A8 is primarily expressed in islets of the endocrine pancreas. Human SLC30A8 loss-of-function mutations protect against type 2 diabetes. However, Slc30a8 knockout mice do not show this protection. We have generated a mouse model mimicking a common protective human SLC30A8 loss-of-function allele. This mouse model shows a beneficial effect of loss of SLC30A8 function on β-cell biology. In particular, mice carrying the protective R138X allele have an increased capacity to secrete insulin in high-glucose conditions. Understanding the signaling mechanisms regulating insulin secretion in the R138X mice could provide novel insights into β-cell biology, and may lead to the identification of therapeutic targets for the treatment of diabetes. SLC30A8 encodes a zinc transporter that is primarily expressed in the pancreatic islets of Langerhans. In β-cells it transports zinc into insulin-containing secretory granules. Loss-of-function (LOF) mutations in SLC30A8 protect against type 2 diabetes in humans. In this study, we generated a knockin mouse model carrying one of the most common human LOF mutations for SLC30A8, R138X. The R138X mice had normal body weight, glucose tolerance, and pancreatic β-cell mass. Interestingly, in hyperglycemic conditions induced by the insulin receptor antagonist S961, the R138X mice showed a 50% increase in insulin secretion. This effect was not associated with enhanced β-cell proliferation or mass. Our data suggest that the SLC30A8 R138X LOF mutation may exert beneficial effects on glucose metabolism by increasing the capacity of β-cells to secrete insulin under hyperglycemic conditions.


Proceedings of the National Academy of Sciences of the United States of America | 1999

Angiopoietins 3 and 4: Diverging gene counterparts in mice and humans

David M. Valenzuela; Jennifer Griffiths; Jose Rojas; Thomas H. Aldrich; Pamela F. Jones; Hao Zhou; Joyce McClain; Neal G. Copeland; Debra J. Gilbert; Nancy A. Jenkins; Tammy T. Huang; N. Papadopoulos; Peter C. Maisonpierre; Samuel Davis; George D. Yancopoulos

Collaboration


Dive into the Jose Rojas's collaboration.

Researchain Logo
Decentralizing Knowledge