Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose S. Duca is active.

Publication


Featured researches published by Jose S. Duca.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery of pyrazolo[1,5-a]pyrimidine-based CHK1 inhibitors: A template-based approach-Part 2.

Michael P. Dwyer; Kamil Paruch; Marc Labroli; Carmen Alvarez; Kerry Keertikar; Cory Poker; Randall R. Rossman; Thierry O. Fischmann; Jose S. Duca; Vincent Madison; David Parry; Nicole Davis; Wolfgang Seghezzi; Derek Wiswell; Timothy J. Guzi

Previous efforts by our group have established pyrazolo[1,5-a]pyrimidine as a viable core for the development of potent and selective CDK inhibitors. As part of an effort to utilize the pyrazolo[1,5-a]pyrimidine core as a template for the design and synthesis of potent and selective kinase inhibitors, we focused on a key regulator in the cell cycle progression, CHK1. Continued SAR development of the pyrazolo[1,5-a]pyrimidine core at the C5 and C6 positions, in conjunction with previously disclosed SAR at the C3 and C7 positions, led to the discovery of potent and selective CHK1 inhibitors.


Virology | 2010

Clinical resistance to vicriviroc through adaptive V3 loop mutations in HIV-1 subtype D gp120 that alter interactions with the N-terminus and ECL2 of CCR5

Robert A. Ogert; Yan Hou; Lei Ba; Lisa Wojcik; Ping Qiu; Nicholas J. Murgolo; Jose S. Duca; Lisa M. Dunkle; Robert Ralston; John A. Howe

The HIV-1 CCR5 co-receptor is a member of the chemokine receptor family of G-protein coupled receptors; for which a number of small molecule antagonists, such as vicriviroc (VCV), have been developed to inhibit HIV-1 R5-tropic replication. In this study, we analyzed an HIV-1 subtype D envelope gene from a clinical trial subject who developed complete resistance to VCV. The HIV-1 resistant envelope has six predominant amino acid changes in the V3 loop, together with one change in the C4 domain of gp120, which are fully responsible for the resistance phenotype. V3 loop mutations Q315E and R321G are essential for resistance to VCV, whereas E328K and G429R in C4 contribute significantly to the infectivity of the resistant variant. Collectively, these amino acid changes influenced the interaction of gp120 with both the N-terminus and ECL2 region of CCR5.


Journal of Virology | 2009

Structure-Function Analysis of Human Immunodeficiency Virus Type 1 gp120 Amino Acid Mutations Associated with Resistance to the CCR5 Coreceptor Antagonist Vicriviroc

Robert A. Ogert; Lei Ba; Yan Hou; Catherine Buontempo; Ping Qiu; Jose S. Duca; Nicholas J. Murgolo; Peter Buontempo; Robert Ralston; John A. Howe

ABSTRACT Vicriviroc (VCV) is a small-molecule CCR5 coreceptor antagonist currently in clinical trials for treatment of R5-tropic human immunodeficiency virus type 1 (HIV-1) infection. With this drug in development, identification of resistance mechanisms to VCV is needed to allow optimal outcomes in clinical practice. In this study we further characterized VCV resistance in a lab-adapted, VCV-resistant RU570 virus (RU570-VCVres). We show that K305R, R315Q, and K319T amino acid changes in the V3 loop, along with P437S in C4, completely reproduced the resistance phenotype in a chimeric ADA envelope containing the C2-V5 region from RU570 passage control gp120. The K305R amino acid change primarily impacted the degree of resistance, whereas K319T contributed to both resistance and virus infectivity. The P437S mutation in C4 had more influence on the relative degree of virus infectivity, while the R315Q mutation contributed to the virus concentration-dependent phenotypic resistance pattern observed for RU570-VCVres. RU570-VCVres pseudovirus entry with VCV-bound CCR5 was dramatically reduced by Y10A, D11A, Y14A, and Y15A mutations in the N terminus of CCR5, whereas these mutations had less impact on entry in the absence of VCV. Notably, an additional Q315E/I317F substitution in the crown region of the V3 loop enhanced resistance to VCV, resulting in a stronger dependence on the N terminus for viral entry. By fitting the envelope mutations to a molecular model of a recently described docked N-terminal CCR5 peptide consisting of residues 2 to 15 in complex with HIV-1 gp120 CD4, potential new interactions in gp120 with the N terminus of CCR5 were uncovered. The cumulative results of this study suggest that as the RU570 VCV-resistant virus adapted to use the drug-bound receptor, it also developed an increased reliance on the N terminus of CCR5.


Bioorganic & Medicinal Chemistry Letters | 2011

I. Novel HCV NS5B polymerase inhibitors: discovery of indole 2-carboxylic acids with C3-heterocycles.

Gopinadhan N. Anilkumar; Charles A. Lesburg; Oleg Selyutin; Stuart B. Rosenblum; Qingbei Zeng; Yueheng Jiang; Tin Yau Chan; Haiyan Pu; Henry M. Vaccaro; Li Wang; Frank Bennett; Kevin X. Chen; Jose S. Duca; Stephen Gavalas; Yuhua Huang; Patrick Pinto; Mousumi Sannigrahi; Francisco Velazquez; Srikanth Venkatraman; Bancha Vibulbhan; Sony Agrawal; Nancy Butkiewicz; Boris Feld; Eric Ferrari; Zhiqing He; Chuan Kui Jiang; Robert E. Palermo; Patricia McMonagle; Hsueh-Cheng Huang; Neng Yang Shih

SAR development of indole-based palm site inhibitors of HCV NS5B polymerase exemplified by initial indole lead 1 (NS5B IC(50)=0.9 μM, replicon EC(50)>100 μM) is described. Structure-based drug design led to the incorporation of novel heterocyclic moieties at the indole C3-position which formed a bidentate interaction with the protein backbone. SAR development resulted in leads 7q (NS5B IC(50)=0.032 μM, replicon EC(50)=1.4 μM) and 7r (NS5B IC(50)=0.017 μM, replicon EC(50)=0.3 μM) with improved enzyme and replicon activity.


ACS Medicinal Chemistry Letters | 2012

Discovery of a Novel Series of CHK1 Kinase Inhibitors with a Distinctive Hinge Binding Mode.

Xiaohua Huang; Cliff C. Cheng; Thierry O. Fischmann; Jose S. Duca; Xianshu Yang; Matthew Richards; Gerald W. Shipps

A novel series of CHK1 inhibitors with a distinctive hinge binding mode, exemplified by 2-aryl-N-(2-(piperazin-1-yl)phenyl)thiazole-4-carboxamide, was discovered through high-throughput screening using the affinity selection-mass spectrometry (AS-MS)-based Automated Ligand Identification System (ALIS) platform. Structure-based ligand design and optimization led to significant improvements in potency to the single digit nanomolar range and hundred-fold selectivity against CDK2.


Journal of Chemical Information and Modeling | 2008

Cross-Docking of Inhibitors into CDK2 Structures. 1

Johannes H. Voigt; Carl Elkin; Vincent Madison; Jose S. Duca

Predicting protein/ligand binding affinity is one of the most challenging computational chemistry tasks. Numerous methods have been developed to address this challenge, but they all have limitations. Failure to account for protein flexibility has been a shortcoming of many methods. In this cross-docking study the data set comprised 150 inhibitor complexes of the protein kinase CDK2. Gold and Glide performed well in terms of docking accuracy. The chance of cross-docking a ligand within a 2 A RMSD of its experimental pose was found to be 50%. Relative binding potency was not properly predicted from scoring functions, even though cross-docking of each inhibitor into each protein structure was performed and only scores of correctly docked ligands were considered. An accompanying paper (Voigt, J. H.; Elkin, C.; Madison, V. S. Duca, J. S. J. Chem. Inf. Model. 2008, 48, 669-678) covers cross-docking and docking accuracy from the perspective of using multiple protein structures.


Biochemistry | 2009

Thermodynamics of Nucleotide and Inhibitor Binding to Wild-Type and Ispinesib-Resistant Forms of Human Kinesin Spindle Protein

Payal R. Sheth; Andrea D. Basso; Jose S. Duca; Charles A. Lesburg; Polina Ogas; Kimberly Gray; Lissette Nale; Anthony Mannarino; Andrew Prongay; Hung V. Le

Current antimitotic cancer chemotherapy based on vinca alkaloids and taxanes target tubulin, a protein required not only for mitotic spindle formation but also for the overall structural integrity of terminally differentiated cells. Among many innovations targeting specific mitotic events, inhibition of motor enzymes including KSP (or Eg5) has been validated as a highly productive approach. Many reported KSP inhibitors bind to an induced allosteric site near the site of ATP hydrolysis, and some have been tested in clinical trials with varying degrees of success. This allosteric site was defined in detail by X-ray crystallography of inhibitor complexes, yet complementary information on binding thermodynamics is still lacking. Using two model ATP-uncompetitive inhibitors, monastrol and ispinesib, we report here the results of thermal denaturation and isothermal titration calorimetric studies. These binding studies were conducted with the wild-type KSP motor domain as well as two ispinesib mutants (D130V and A133D) identified to confer resistance to ispinesib treatment. The thermodynamic parameters obtained were placed in the context of the available structural information and corresponding models of the two ispinesib-resistant mutants. The resulting overall information formed a strong basis for future structure-based design of inhibitors of KSP and related motor enzymes.


Bioorganic & Medicinal Chemistry Letters | 2010

Inhibitors of hepatitis C virus polymerase: Synthesis and characterization of novel 2-oxy-6-fluoro-N-((S)-1-hydroxy-3-phenylpropan-2-yl)-benzamides

Cliff C. Cheng; Gerald W. Shipps; Zhiwei Yang; Noriyuki Kawahata; Charles A. Lesburg; Jose S. Duca; Jamie Bandouveres; Jack D. Bracken; Chuan-kui Jiang; Sony Agrawal; Eric Ferrari; Hsueh-Cheng Huang

SAR exploration from an initial hit, (S)-N-(2-cyclohexenylethyl)-2-fluoro-6-(2-(1-hydroxy-3-phenylpropan-2-ylamino)-2-oxoethoxy)benzamide (1), identified using our proprietary automated ligand identification system (ALIS),(1) has led to a novel series of selective hepatitis C virus (HCV) NS5B polymerase inhibitors with improved in vitro potency as exemplified by (S)-2-fluoro-6-(2-(1-hydroxy-3-phenylpropan-2-ylamino)-2-oxoethoxy)-N-isopentyl-N-methylbenzamidecarboxamide (41) (IC(50)=0.5 microM). The crystal structure of an analogue (44) was solved and provided rationalization of the SAR of this series, which binds in a distinct manner in the palm domain of NS5B, consistent with biochemical analysis using enzyme mutant variants. These data warrant further lead optimization efforts on this novel series of non-nucleoside inhibitors targeting the HCV polymerase.


Bioorganic & Medicinal Chemistry Letters | 2012

II. Novel HCV NS5B polymerase inhibitors: discovery of indole C2 acyl sulfonamides.

Gopinadhan N. Anilkumar; Oleg Selyutin; Stuart B. Rosenblum; Qingbei Zeng; Yueheng Jiang; Tin-Yau Chan; Haiyan Pu; Li Wang; Frank Bennett; Kevin X. Chen; Charles A. Lesburg; Jose S. Duca; Stephen Gavalas; Yuhua Huang; Patrick Pinto; Mousumi Sannigrahi; Francisco Velazquez; Srikanth Venkatraman; Bancha Vibulbhan; Sony Agrawal; Eric Ferrari; Chuan-kui Jiang; Hsueh-Cheng Huang; Neng-Yang Shih; F. George Njoroge; Joseph A. Kozlowski

Development of SAR at the C2 position of indole lead 1, a palm site inhibitor of HCV NS5B polymerase (NS5B IC(50)=0.053μM, replicon EC(50)=4.8μM), is described. Initial screening identified an acyl sulfonamide moiety as an isostere for the C2 carboxylic acid group. Further SAR investigation resulted in identification of acyl sufonamide analog 7q (NS5B IC(50)=0.039μM, replicon EC(50)=0.011μM) with >100-fold improved replicon activity.


Bioorganic & Medicinal Chemistry Letters | 2009

Pyrazolo[1,5-a]pyrimidine-based inhibitors of HCV polymerase.

Janeta Popovici-Muller; Gerald W. Shipps; Kristin E. Rosner; Yongqi Deng; Tong Wang; Patrick J. Curran; Meredith A. Brown; M. Arshad Siddiqui; Alan B. Cooper; Jose S. Duca; Michael Cable; Viyyoor M. Girijavallabhan

The present paper describes a novel series of HCV RNA polymerase inhibitors based on a pyrazolo[1,5-a]pyrimidine scaffold bearing hydrophobic groups and an acidic functionality. Several compounds were optimized to low nanomolar potencies in a biochemical RdRp assay. SAR trends clearly reveal a stringent preference for a cyclohexyl group as one of the hydrophobes, and improved activities for carboxylic acid derivatives.

Collaboration


Dive into the Jose S. Duca's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge