José Tormo
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José Tormo.
The EMBO Journal | 1996
José Tormo; Raphael Lamed; A J Chirino; Ely Morag; Edward A. Bayer; Yuval Shoham; T A Steitz
The crystal structure of a family‐III cellulose‐binding domain (CBD) from the cellulosomal scaffoldin subunit of Clostridium thermocellum has been determined at 1.75 A resolution. The protein forms a nine‐stranded beta sandwich with a jelly roll topology and binds a calcium ion. conserved, surface‐exposed residues map into two defined surfaces located on opposite sides of the molecule. One of these faces is dominated by a planar linear strip of aromatic and polar residues which are proposed to interact with crystalline cellulose. The other conserved residues are contained in a shallow groove, the function of which is currently unknown, and which has not been observed previously in other families of CBDs. On the basis of modeling studies combined with comparisons of recently determined NMR structures for other CBDs, a general model for the binding of CBDs to cellulose is presented. Although the proposed binding of the CBD to cellulose is essentially a surface interaction, specific types and combinations of amino acids appear to interact selectively with glucose moieties positioned on three adjacent chains of the cellulose surface. The major interaction is characterized by the planar strip of aromatic residues, which align along one of the chains. In addition, polar amino acid residues are proposed to anchor the CBD molecule to two other adjacent chains of crystalline cellulose.
The EMBO Journal | 1998
Alba Guarné; José Tormo; Regina Kirchweger; Doris M. Pfistermueller; Ignacio Fita; Tim Skern
The leader protease of foot‐and‐mouth disease virus, as well as cleaving itself from the nascent viral polyprotein, disables host cell protein synthesis by specific proteolysis of a cellular protein: the eukaryotic initiation factor 4G (eIF4G). The crystal structure of the leader protease presented here comprises a globular catalytic domain reminiscent of that of cysteine proteases of the papain superfamily, and a flexible C‐terminal extension found intruding into the substrate‐binding site of an adjacent molecule. Nevertheless, the relative disposition of this extension and the globular domain to each other supports intramolecular self‐processing. The different sequences of the two substrates cleaved during viral replication, the viral polyprotein (at LysLeuLys↓GlyAlaGly) and eIF4G (at AsnLeuGly↓ArgThrThr), appear to be recognized by distinct features in a narrow, negatively charged groove traversing the active centre. The structure illustrates how the prototype papain fold has been adapted to the requirements of an RNA virus. Thus, the protein scaffold has been reduced to a minimum core domain, with the active site being modified to increase specificity. Furthermore, surface features have been developed which enable C‐terminal self‐processing from the viral polyprotein.
Structure | 1995
Jerónimo Bravo; Núria Verdaguer; José Tormo; Christian Betzel; Jack Switala; Peter C. Loewen; Ignacio Fita
BACKGROUND Catalase is a ubiquitous enzyme present in both the prokaryotic and eukaryotic cells of aerobic organisms. It serves, in part, to protect the cell from the toxic effects of small peroxides. Escherichia coli produces two catalases, HPI and HPII, that are quite distinct from other catalases in physical structure and catalytic properties. HPII, studied in this work, is encoded by the katE gene, and has been characterized as an oligomeric, monofunctional catalase containing one cis-heme d prosthetic group per subunit of 753 residues. RESULTS The crystal structure of catalase HPII from E. coli has been determined to 2.8 A resolution. The asymmetric unit of the crystal contains a whole molecule, which is a tetramer with accurate 222 point group symmetry. In the model built, that includes residues 27-753 and one heme group per monomer, strict non-crystallographic symmetry has been maintained. The crystallographic agreement R-factor is 20.1% for 58,477 reflections in the resolution shell 8.0-2.8 A. CONCLUSIONS Despite differences in size and chemical properties, which were suggestive of a unique catalase, the deduced structure of HPII is related to the structure of catalase from Penicillium vitale, whose sequence is not yet known. In particular, both molecules have an additional C-terminal domain that is absent in the bovine catalase. This extra domain contains a Rossmann fold but no bound nucleotides have been detected, and its physiological role is unknown. In HPII, the heme group is modified to a heme d and inverted with respect to the orientation determined in all previously reported heme catalases. HPII is the largest catalase for which the structure has been determined to almost atomic resolution.
Journal of Biological Chemistry | 2001
Andrea S. Llera; Fernando Viedma; Francisco Sánchez-Madrid; José Tormo
CD69, one of the earliest specific antigens acquired during lymphoid activation, acts as a signal-transducing receptor involved in cellular activation events, including proliferation and induction of specific genes. CD69 belongs to a family of receptors that modulate the immune response and whose genes are clustered in the natural killer (NK) gene complex. The extracellular portion of these receptors represent a subfamily of C-type lectin-like domains (CTLDs), which are divergent from true C-type lectins and are referred to as NK-cell domains (NKDs). We have determined the three-dimensional structure of human CD69 NKD in two different crystal forms. CD69 NKD adopts the canonical CTLD fold but lacks the features involved in Ca2+ and carbohydrate binding by C-type lectins. CD69 NKD dimerizes noncovalently, both in solution and in crystalline state. The dimer interface consists of a hydrophobic, loosely packed core, surrounded by polar interactions, including an interdomain β sheet. The intersubunit core shows certain structural plasticity that may facilitate conformational rearrangements for binding to ligands. The surface equivalent to the binding site of other members of the CTLD superfamily reveals a hydrophobic patch surrounded by conserved charged residues that probably constitutes the CD69 ligand-binding site.
Journal of Immunology | 2000
Doo Hyun Chung; Kannan Natarajan; Lisa F. Boyd; José Tormo; Roy A. Mariuzza; Wayne M. Yokoyama; David H. Margulies
We have used a recombinant, biotinylated form of the mouse NK cell inhibitory receptor, Ly49A, to visualize the expression of MHC class I (MHC-I) ligands on living lymphoid cells. A panel of murine strains, including MHC congenic lines, was examined. We detected binding of Ly49A to cells expressing H-2Dd, H-2Dk, and H-2Dp but not to those expressing other MHC molecules. Cells of the MHC-recombinant strain B10.PL (H-2u) not only bound Ly49A but also inhibited cytolysis by Ly49A+ effector cells, consistent with the correlation of in vitro binding and NK cell function. Binding of Ly49A to H-2Dd-bearing cells of different lymphoid tissues was proportional to the level of H-2Dd expression and was not related to the lineage of the cells examined. These binding results, interpreted in the context of amino acid sequence comparisons and the recently determined three-dimensional structure of the Ly49A/H-2Dd complex, suggest a role for amino acid residues at the amino-terminal end of the α1 helix of the MHC-I molecule for Ly49A interaction. This view is supported by a marked decrease in affinity of an H-2Dd mutant, I52 M, for Ly49A. Thus, allelic variation of MHC-I molecules controls measurable affinity for the NK inhibitory receptor Ly49A and explains differences in functional recognition in different mouse strains.
Journal of Molecular Biology | 1994
Xavier de la Cruz; Alan E. Mark; José Tormo; Ignacio Fita; Wilfred F. van Gunsteren
Molecular dynamics simulations have been used to investigate the flexibility and variations in the shape of the binding site of an antibody against human Rhinovirus serotype 2 (HRV2) and its complex with a 15 amino acid oligopeptide, the structure of which has been recently determined by X-ray crystallography. During the simulation of the unbound antibody the binding site, defined in terms of the hypervariable regions or complementarity determining regions (CDRs), shows significant fluctuations in shape. For the complex such variations in the shape of the binding site were reduced. The largest fluctuations in the unbound antibody occurred within the CDR-H3. The largest differences between the bound and unbound crystal structures are also associated with CDR-H3. The relative displacements of the loops have been analysed in terms of internal distortions, rigid body motions of the loops and changes with respect to the framework regions. The degree to which the motions of the loops are correlated and the variation in the volume of the binding pocket during the simulation have also been examined.
Biochemistry | 2000
Eric J. Sundberg; Mariela Urrutia; Bradford C. Braden; Jordi Isern; Daisuke Tsuchiya; Barry A. Fields; Emilio L. Malchiodi; José Tormo; Frederick P. Schwarz; Roy A. Mariuzza
Journal of Molecular Biology | 2000
Alba Guarné; Bernhard Hampoelz; Walter Glaser; Xavier Carpena; José Tormo; Ignacio Fita; Tim Skern
Journal of Biological Chemistry | 2001
Jian Wang; Mary C. Whitman; Kannan Natarajan; José Tormo; Roy A. Mariuzza; David Michael Margulies
Journal of Molecular Biology | 1994
Raphael Lamed; José Tormo; Arthur J. Chirino; Ely Morag; Edward A. Bayer