José Villanueva
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José Villanueva.
EMBO Reports | 2010
Frédéric Darios; Violeta Ruipérez; Inmaculada López; José Villanueva; Luis M. Gutiérrez; Bazbek Davletov
α‐Synuclein is a synaptic modulatory protein implicated in the pathogenesis of Parkinson disease. The precise functions of this small cytosolic protein are still under investigation. α‐Synuclein has been proposed to regulate soluble N‐ethylmaleimide‐sensitive factor attachment protein receptor (SNARE) proteins involved in vesicle fusion. Interestingly, α‐synuclein fails to interact with SNARE proteins in conventional protein‐binding assays, thus suggesting an indirect mode of action. As the structural and functional properties of both α‐synuclein and the SNARE proteins can be modified by arachidonic acid, a common lipid regulator, we analysed this possible tripartite link in detail. Here, we show that the ability of arachidonic acid to stimulate SNARE complex formation and exocytosis can be controlled by α‐synuclein, both in vitro and in vivo. α‐Synuclein sequesters arachidonic acid and thereby blocks the activation of SNAREs. Our data provide mechanistic insights into the action of α‐synuclein in the modulation of neurotransmission.
Neuroscience | 2007
Daniel Giner; Inmaculada López; José Villanueva; Vanesa Torres; Salvador Viniegra; Luis M. Gutiérrez
Dense vesicles can be observed in live bovine chromaffin cells using fluorescent reflection confocal microscopy. These vesicles display a similar distribution, cytoplasmic density and average size as the chromaffin granules visualized by electron microscopy. In addition, the acidic vesicles labeled with Lysotracker Red comprised a subpopulation of the vesicles that are visualized by reflection fluorescence. A combination of fluorescence reflection and transmitted light images permitted the movements of vesicles in relation to the cortical cytoskeleton to be studied. The movement of vesicles located on the outside of this structure was restricted, with an apparent diffusion coefficient of 1.0+/-0.4 x 10(-4) microm(2)/s. In contrast, vesicles located in the interior moved much more freely and escaped from the visual confocal plane. Lysotracker labeling was more appropriate to study the movement of the faster moving vesicles, whose diffusion coefficient was five times higher. Using this type of labeling we confirmed the restriction on cortical movement and showed a clear relationship between vesicle mobility and the kinetics of cytoskeletal movement on both sides of the cortical cytoskeleton. This relationship was further emphasized by studying cytoskeletal organization and kinetics. Indeed, an estimate of the size of the cytoskeletal polygonal cages present in the cortical region and in the cell interior agreed well with the calculation of the theoretical radius of the cages imprisoning vesicle movement. Therefore, these data suggest that the structure and kinetics of the cytoskeleton governs vesicle movements in different regions of chromaffin cells.
Journal of Cell Science | 2011
Cristina J. Torregrosa-Hetland; José Villanueva; Daniel Giner; Inmaculada Lopez-Font; Angel Nadal; Ivan Quesada; Salvador Viniegra; Giovanna Expósito-Romero; Amparo Gil; Virginia González-Vélez; Javier Segura; Luis M. Gutiérrez
We have studied how the F-actin cytoskeleton is involved in establishing the heterogeneous intracellular Ca2+ levels ([Ca2+]i) and in the organization of the exocytotic machinery in cultured bovine chromaffin cells. Simultaneous confocal visualization of [Ca2+]i and transmitted light studies of the cytoskeleton showed that, following cell stimulation, the maximal signal from the Ca2+-sensitive fluorescent dye Fluo-3 was in the empty cytosolic spaces left by cytoskeletal cages. This was mostly due to the accumulation of the dye in spaces devoid of cytoskeletal components, as shown by the use of alternative Ca2+-insensitive fluorescent cytosolic markers. In addition to affecting the distribution of such compounds in the cytosol, the cytoskeleton influenced the location of L- and P-Q-type Ca2+ channel clusters, which were associated with the borders of cytoskeletal cages in resting and stimulated cells. Indeed, syntaxin-1 and synaptotagmin-1, which are components of the secretory machinery, were present in the same location. Furthermore, granule exocytosis took place at these sites, indicating that the organization of the F-actin cytoskeletal cortex shapes the preferential sites for secretion by associating the secretory machinery with preferential sites for Ca2+ entry. The influence of this cortical organization on the propagation of [Ca2+]i can be modelled, illustrating how it serves to define rapid exocytosis.
Traffic | 2009
Inmaculada López; José A. Ortiz; José Villanueva; Vanesa Torres; Cristina J. Torregrosa-Hetland; María del Mar Francés; Salvador Viniegra; Luis M. Gutiérrez
The expression of SNAP‐25 fused to green fluorescent protein (GFP) has been instrumental in demonstrating SNARE role in exocytosis. The wild‐type GFP–SNAP‐25 and a Δ9 form, product of botulinum neurotoxin A activity, the main ingredient in the BOTOX preparation, were employed here to study SNARE implication in vesicle mobility and fusion in cultured bovine chromaffin cells, a neuroendocrine exocytotic model. Using total internal reflection fluorescent microscopy, we have identified membrane microdomains of 500–600 nm diameter that contain both SNAP‐25 and syntaxin‐1 and associate with synaptobrevin‐2. Interestingly, while the SNAP‐25 Δ9 formed similar clusters, they displayed increased mobility both laterally and in the axis perpendicular to the plasmalemma, and this correlates with the enhanced dynamics of associated chromaffin granules. SNARE cluster‐enhanced motion is reversed by elevation of the intracellular calcium level. Furthermore, single vesicle fusion was unlikely in the highly mobile vesicles present in the cells expressing SNAP‐25 Δ9, which, in addition, displayed in average slower fusion kinetics. Consequently, SNARE cluster dynamics is a new aspect to consider when determining the factors contributing to the mobility of the vesicles in close vicinity to the plasma membrane and also the probability of exocytosis of this granule population.
Journal of Molecular Neuroscience | 2012
José Villanueva; Cristina J. Torregrosa-Hetland; Virginia Garcia-Martinez; María del Mar Francés; Salvador Viniegra; Luis M. Gutiérrez
Chromaffin granules are restrained in a dense cortical cytoskeleton before releasing their complex mix of active substances in response to cell stimulation. In recent years, the complex organization and dynamics of the chromaffin cell cortex has been unveiled through its analysis with a range of techniques to visualize this structure, including confocal fluorescence, transmitted light, and evanescent field microscopy. Accordingly, it has become apparent that the cortex is a dense F-actin mesh that contains open polygonal spaces through which vesicles can access the submembrane space. In addition to its retentive role, this structure also influences vesicle motion in both the resting state and during cell stimulation with secretagogues. During secretion, the chromaffin cell cortex undergoes a complex reorganization, helping to replenish the empty fast releasable pool of vesicles. Such changes in the cortical cytoskeleton and in the vesicle motion are governed by the activity of molecular motors, such as myosins II and Va. Interestingly, the F-actin/myosin II network also affects the final stages of exocytosis, which involve the opening and expansion of the fusion pore, and the extrusion of the vesicles contents.
Journal of Molecular Neuroscience | 2012
José Villanueva; Vanesa Torres; Cristina J. Torregrosa-Hetland; Virginia Garcia-Martinez; Inmaculada Lopez-Font; Salvador Viniegra; Luis M. Gutiérrez
Chromaffin cell catecholamines are released when specialized secretory vesicles undergo exocytotic membrane fusion. Evidence indicates that vesicle supply and fusion are controlled by the activity of the cortical F-actin–myosin II network. To study in detail cell cortex and vesicle interactions, we use fluorescent labeling with GFP–lifeact and acidotropic dyes in confocal and evanescent wave microscopy. These techniques provide structural details and dynamic images of chromaffin granules caged in a complex cortical structure. Both the movement of cortical structures and granule motion appear to be linked, and this motion can be restricted by the myosin II-specific inhibitor, blebbistatin, and the F-actin stabilizer, jasplakinolide. These treatments also affect the position of the vesicles in relation to the plasma membrane, increasing the distance between them and the fusion sites. Consequently, we observed slower single vesicle fusion kinetics in treated cells after neutralization of acridine orange-loaded granules during exocytosis. Increasing the distance between the granules and the fusion sites appears to be linked to the retraction of the F-actin cytoskeleton when treated with jasplakinolide. Thus, F-actin–myosin II inhibitors appear to slow granule fusion kinetics by altering the position of vesicles after relaxation of the cortical network.
The International Journal of Biochemistry & Cell Biology | 2013
Cristina J. Torregrosa-Hetland; José Villanueva; Virginia Garcia-Martinez; Giovanna Expósito-Romero; María del Mar Francés; Luis M. Gutiérrez
It has been proposed recently that the F-actin cytoskeleton organizes the relative disposition of the SNARE proteins and calcium channels that form part of the secretory machinery in chromaffin cells, a neurosecretory model. To test this idea, we used confocal microscopy do determine if DsRed-SNAP-25 microdomains, which define the final sites of exocytosis along with syntaxin-1, preferentially remain in contact with F-actin cortical structures labelled by lifeact-EGFP. A quantitative analysis showed that in cells over-expressing these constructs there is a preferential colocalization, rather than a random distribution of SNAP-25 patches. To analyze the possible interactions between these proteins, we designed FRET experiments and tested whether treatment with agents that affect F-actin mobility would modify SNAP-25 movement. The significant FRET efficiencies detected suggest that direct molecular interactions occur, whereas dynamic experiments using TIRFM revealed that attenuation of cortical F-actin movement clearly diminishes the mobility of SNAP-25 clusters. Taken together, these data can be explained by a model that associates components of the secretory machinery to the F-actin cortex through flexible links.
Hfsp Journal | 2010
José Villanueva; Cristina J. Torregrosa-Hetland; Amparo Gil; Virginia González-Vélez; Javier Segura; Salvador Viniegra; Luis M. Gutiérrez
The organization of cytoplasm in excitable cells was a largely ignored factor when mathematical models were developed to understand intracellular calcium and secretory behavior. Here we employed a combination of fluorescent evanescent and transmitted light microscopy to explore the F‐actin cytoskeletal organization in the vicinity of secretory sites in cultured bovine chromaffin cells. This technique and confocal fluorescent microscopy show chromaffin granules associated with the borders of cortical cytoskeletal cages forming an intricate tridimensional network. Furthermore, the overexpression of SNAP‐25 in these cells also reveals the association of secretory machinery clusters with the borders of these cytoskeletal cages. The importance of these F‐actin cage borders is stressed when granules appear to interact and remain associated during exocytosis visualized in acridin orange loaded vesicles. These results will prompt us to propose a model of cytoskeletal cages, where the secretory machinery is associated with its borders. Both the calcium level and the secretory response are enhanced in this geometrical arrangement when compared with a random distribution of the secretory machinery that is not restricted to the borders of the cage.
PLOS ONE | 2013
Virginia Garcia-Martinez; José Villanueva; Cristina J. Torregrosa-Hetland; Robert Bittman; Ashlee N. Higdon; Victor M. Darley-Usmar; Bazbek Davletov; Luis M. Gutiérrez
Lipid molecules such as arachidonic acid (AA) and sphingolipid metabolites have been implicated in modulation of neuronal and endocrine secretion. Here we compare the effects of these lipids on secretion from cultured bovine chromaffin cells. First, we demonstrate that exogenous sphingosine and AA interact with the secretory apparatus as confirmed by FRET experiments. Examination of plasma membrane SNARE microdomains and chromaffin granule dynamics using total internal reflection fluorescent microscopy (TIRFM) suggests that sphingosine production promotes granule tethering while arachidonic acid promotes full docking. Our analysis of single granule release kinetics by amperometry demonstrated that both sphingomyelinase and AA treatments enhanced drastically the amount of catecholamines released per individual event by either altering the onset phase of or by prolonging the off phase of single granule catecholamine release kinetics. Together these results demonstrate that the kinetics and extent of the exocytotic fusion pore formation can be modulated by specific signalling lipids through related functional mechanisms.
Journal of Cell Science | 2014
José Villanueva; Salvador Viniegra; Yolanda Gimenez-Molina; Virginia Garcia-Martinez; Giovanna Expósito-Romero; María del Mar Francés; Javier García-Sancho; Luis M. Gutiérrez
ABSTRACT Knowledge of the distribution of mitochondria and endoplasmic reticulum (ER) in relation to the position of exocytotic sites is relevant to understanding the influence of these organelles in tuning Ca2+ signals and secretion. Confocal images of probes tagged to mitochondria and the F-actin cytoskeleton revealed the existence of two populations of mitochondria, one that was cortical and one that was perinuclear. This mitochondrial distribution was also confirmed by using electron microscopy. In contrast, ER was sparse in the cortex and more abundant in deep cytoplasmic regions. The mitochondrial distribution might be due to organellar transport, which experiences increasing restrictions in the cell cortex. Further study of organelle distribution in relation to the position of SNARE microdomains and the granule fusion sites revealed that a third of the cortical mitochondria colocalized with exocytotic sites and another third located at a distance closer than two vesicle diameters. ER structures were also present in the vicinity of secretory sites but at a lower density. Therefore, mitochondria and ER have a spatial distribution that suggests a specialized role in modulation of exocytosis that fits with the role of cytosolic Ca2+ microdomains described previously.