Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Josef Ammermüller is active.

Publication


Featured researches published by Josef Ammermüller.


Neuron | 2003

The Presynaptic Active Zone Protein Bassoon Is Essential for Photoreceptor Ribbon Synapse Formation in the Retina

Oliver Dick; Susanne tom Dieck; Wilko D. Altrock; Josef Ammermüller; Reto Weiler; Craig C. Garner; Eckart D. Gundelfinger; Johann Helmut Brandstätter

The photoreceptor ribbon synapse is a highly specialized glutamatergic synapse designed for the continuous flow of synaptic vesicles to the neurotransmitter release site. The molecular mechanisms underlying ribbon synapse formation are poorly understood. We have investigated the role of the presynaptic cytomatrix protein Bassoon, a major component of the photoreceptor ribbon, in a mouse retina deficient of functional Bassoon protein. Photoreceptor ribbons lacking Bassoon are not anchored to the presynaptic active zones. This results in an impaired photoreceptor synaptic transmission, an abnormal dendritic branching of neurons postsynaptic to photoreceptors, and the formation of ectopic synapses. These findings suggest a critical role of Bassoon in the formation and the function of photoreceptor ribbon synapses of the mammalian retina.


The Journal of Neuroscience | 2005

Deletion of Connexin45 in Mouse Retinal Neurons Disrupts the Rod/Cone Signaling Pathway between AII Amacrine and ON Cone Bipolar Cells and Leads to Impaired Visual Transmission

Stephan Maxeiner; Karin Dedek; Ulrike Janssen-Bienhold; Josef Ammermüller; Hendrik Brune; Taryn Kirsch; Mario Pieper; Joachim Degen; Olaf Krüger; Klaus Willecke; Reto Weiler

Connexin45 (Cx45) is known to be expressed in the retina, but its functional analysis was problematic because general deletion of Cx45 coding DNA resulted in cardiovascular defects and embryonic lethality at embryonic day 10.5. We generated mice with neuron-directed deletion of Cx45 and concomitant activation of the enhanced green fluorescent protein (EGFP). EGFP labeling was observed in bipolar, amacrine, and ganglion cell populations. Intracellular microinjection of fluorescent dyes in EGFP-labeled somata combined with immunohistological markers revealed Cx45 expression in both ON and OFF cone bipolar cells. The scotopic electroretinogram of mutant mice revealed a normal a-wave but a 40% reduction in the b-wave amplitude, similar to that found in Cx36-deficient animals, suggesting a possible defect in the rod pathway of visual transmission. Indeed, neurotransmitter coupling between AII amacrine cells and Cx45-expressing cone bipolar cells was disrupted in Cx45-deficient mice. These data suggest that both Cx45 and Cx36 participate in the formation of functional heterotypic electrical synapses between these two types of retinal neurons that make up the major rod pathway.


The Journal of Neuroscience | 2004

Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina

Andreas Feigenspan; Ulrike Janssen-Bienhold; Sheriar G. Hormuzdi; Hannah Monyer; Joachim Degen; Goran Söhl; Klaus Willecke; Josef Ammermüller; Reto Weiler

Transgenic technology, immunocytochemistry, electrophysiology, intracellular injection techniques, and reverse transcription PCR were combined to study the expression of neuronal connexin36 (Cx36) in the outer plexiform layer of the mouse retina. Transgenic animals expressed either a fusion protein of full-length Cx36 with enhanced green fluorescent protein (EGFP) attached at the C terminus or exon 2 of Cx36 was replaced byβ-galactosidase (β-gal). In the outer nuclear layer,β-gal-positive cell bodies, which were confined to the most distal region close to the outer limiting membrane, displayed immunoreactivity against S-cone opsin. Cx36–EGFP puncta colocalized with cone pedicles, which were visualized by intracellular injection. In reverse transcriptase PCR experiments, Cx36 mRNA was never detected in samples of rods harvested from the outer nuclear layer. These results strongly suggest expression of Cx36 in cones but not in rods. In vertical sections, Cx36 expression in the vitreal part of the outer plexiform layer was characterized by a patchy distribution. Immunocytochemistry with antibodies against the neurokinin-3 receptor and the potassium channel HCN4 (hyperpolarization-activated cyclic nucleotide-gated potassium channel) displayed clusters of the Cx36 label on the dendrites of OFF-cone bipolar cells. In horizontal sections, these clusters of Cx36 appeared as round or oval-shaped groups of individual puncta, and they were always aligned with the base of cone pedicles. Double-labeling experiments and single-cell reverse transcriptase PCR ruled out expression of Cx36 in horizontal cells and rod bipolar cells. At light microscopic resolution, we found close association of Cx36–EGFP with the AMPA-type glutamate receptor subunit GluR1 but not with GluR2–GluR4, the kainate receptor subunit GluR5, or the metabotropic glutamate receptor mGluR6.


PLOS ONE | 2009

Bat Eyes Have Ultraviolet-Sensitive Cone Photoreceptors

Brigitte Müller; Martin Glösmann; Leo Peichl; Gabriel C. Knop; Cornelia Hagemann; Josef Ammermüller

Mammalian retinae have rod photoreceptors for night vision and cone photoreceptors for daylight and colour vision. For colour discrimination, most mammals possess two cone populations with two visual pigments (opsins) that have absorption maxima at short wavelengths (blue or ultraviolet light) and long wavelengths (green or red light). Microchiropteran bats, which use echolocation to navigate and forage in complete darkness, have long been considered to have pure rod retinae. Here we use opsin immunohistochemistry to show that two phyllostomid microbats, Glossophaga soricina and Carollia perspicillata, possess a significant population of cones and express two cone opsins, a shortwave-sensitive (S) opsin and a longwave-sensitive (L) opsin. A substantial population of cones expresses S opsin exclusively, whereas the other cones mostly coexpress L and S opsin. S opsin gene analysis suggests ultraviolet (UV, wavelengths <400 nm) sensitivity, and corneal electroretinogram recordings reveal an elevated sensitivity to UV light which is mediated by an S cone visual pigment. Therefore bats have retained the ancestral UV tuning of the S cone pigment. We conclude that bats have the prerequisite for daylight vision, dichromatic colour vision, and UV vision. For bats, the UV-sensitive cones may be advantageous for visual orientation at twilight, predator avoidance, and detection of UV-reflecting flowers for those that feed on nectar.


Visual Neuroscience | 2001

Identification and localization of connexin26 within the photoreceptor-horizontal cell synaptic complex.

Ulrike Janssen-Bienhold; Konrad Schultz; Alexandra Gellhaus; Peter Schmidt; Josef Ammermüller; Reto Weiler

Connexin26 (Cx26) is a member of the family of integral membrane proteins that normally form intercellular gap junctional channels. We have used Western blotting, immunofluorescence, immunoelectron microscopy, and single-cell reverse-transcriptase polymerase chain reaction amplification (RT-PCR) to analyze the expression and cellular localization of Cx26 in the carp retina. In the outer plexiform layer, strong clustered Cx26 immunolabeling was concentrated at and restricted to the terminal dendrites of horizontal cells. Single-cell RT-PCR confirmed the expression of Cx26 in carp retinal horizontal cells. 248-bp fragments amplified from cDNAs of four different horizontal cells were cloned and each nucleotide sequence encodes a protein fragment (AA 104-185) with highly significant homology to rat and mouse Cx26. Immunoelectron microscopy revealed that only the invaginating dendrites of horizontal cells in intimate lateral association with the presynaptic ribbon complex were labeled. No labeling was found at the photoreceptor membrane and there was no septalaminar structure, indicative of gap junctions, between photoreceptors and horizontal cells. The focal location of Cx26 at the membrane of the dendritic tips of horizontal cells and the lack of gap junctional morphology suggests that Cx26 might form hemichannels.


Brain Research | 2000

Population coding in spike trains of simultaneously recorded retinal ganglion cells.

Eduardo J. Fernández; José Manuel Ferrández; Josef Ammermüller; Richard A. Normann

To achieve a better understanding of the parallel information processing that takes place in the nervous system, many researchers have recently begun to use multielectrode techniques to obtain high spatial- and temporal-resolution recordings of the firing patterns of neural ensembles. Apart from the complexities of acquiring and storing single unit responses from large numbers of neurons, the multielectrode technique has provided new challenges in the analysis of the responses from many simultaneously recorded neurons. This paper provides insights into the problem of coding/decoding of retinal images by ensembles of retinal ganglion cells. We have simultaneously recorded the responses of 15 ganglion cells to visual stimuli of various intensities and wavelengths and analyzed the data using discriminant analysis. Models of stimulus encoding were generated and discriminant analysis used to estimate the wavelength and intensity of the stimuli. We find that the ganglion cells we have recorded from are non-redundant encoders of these stimulus features. While single ganglion cells are poor classifiers of the stimulus parameters, examination of the responses of only a few ganglion cells greatly enhances our ability to specify the stimulus wavelength and intensity. Of the parameters studied, we find that the rate of firing of the ganglion cells provides the most information about these stimulus parameters, while the timing of the first action potential provides almost as much information. While we are not suggesting that the brain is using these variables, our results show how a population of sensory neurons can encode stimulus features and suggest that the brain could potentially deduce reliable information about stimulus features from response patterns of retinal ganglion cell populations.


Journal of Cell Science | 2009

Aberrant function and structure of retinal ribbon synapses in the absence of complexin 3 and complexin 4

Kerstin Reim; Hanna Regus-Leidig; Josef Ammermüller; Ahmed El-Kordi; Konstantin Radyushkin; Hannelore Ehrenreich; Johann Helmut Brandstätter; Nils Brose

Complexins regulate the speed and Ca2+ sensitivity of SNARE-mediated synaptic vesicle fusion at conventional synapses. Two of the vertebrate complexins, Cplx3 and Cplx4, are specifically localized to retinal ribbon synapses. To test whether Cplx3 and Cplx4 contribute to the highly efficient transmitter release at ribbon synapses, we studied retina function and structure in Cplx3 and Cplx4 single- and double-knockout mice. Electroretinographic recordings from single and double mutants revealed a cooperative perturbing effect of Cplx3 and Cplx4 deletion on the b-wave amplitude, whereas most other detected effects in both plexiform synaptic layers were additive. Light and electron microscopic analyses uncovered a disorganized outer plexiform layer in the retinae of mice lacking Cplx3 and Cplx4, with a significant proportion of photoreceptor terminals containing spherical free-floating ribbons. These structural and functional aberrations were accompanied by behavioural deficits indicative of a vision deficit. Our results show that Cplx3 and Cplx4 are essential regulators of transmitter release at retinal ribbon synapses. Their loss leads to aberrant adjustment and fine-tuning of transmitter release at the photoreceptor ribbon synapse, alterations in transmission at bipolar cell terminals, changes in the temporal structure of synaptic processing in the inner plexiform layer of the retina and perturbed vision.


European Journal of Neuroscience | 2007

Structural and functional remodeling in the retina of a mouse with a photoreceptor synaptopathy: plasticity in the rod and degeneration in the cone system

Dana Specht; Susanne tom Dieck; Josef Ammermüller; Hanna Regus-Leidig; Eckart D. Gundelfinger; Johann Helmut Brandstätter

Knowledge about the plastic and regenerative capacity of the retina is of key importance for therapeutic approaches to restore vision in patients who suffer from degenerative retinal diseases. In the retinae of mice, mutant for the presynaptic scaffolding protein Bassoon, signal transfer at photoreceptor ribbon synapses is disturbed due to impaired ribbon attachment to the active zone. In a long‐term study we observed, with light and electron microscopic immunocytochemistry and electroretinographic recordings, two overlapping events in the Bassoon mutant retina, i.e. loss of photoreceptor synapses in the outer plexiform layer, and structural remodeling and formation of ectopic photoreceptor synapses in the outer nuclear layer, a region usually devoid of synapses. Formation of ectopic synaptic sites starts around the time when photoreceptor synaptogenesis is completed in wild‐type mice and progresses throughout life. The result is a dense plexus of ectopic photoreceptor synapses with significantly altered but considerable synaptic transmission. Ectopic synapse formation is led by the sprouting of horizontal cells followed by the extension of rod bipolar cell neurites that fasciculate with and grow along the horizontal cell processes. Although only the rod photoreceptors and their postsynaptic partners show structural and functional remodeling, our study demonstrates the potential of the retina for long‐lasting plastic changes.


The Journal of Neuroscience | 2012

Munc13-Independent Vesicle Priming at Mouse Photoreceptor Ribbon Synapses

Benjamin H. Cooper; Maike Hemmerlein; Josef Ammermüller; Cordelia Imig; Kerstin Reim; Noa Lipstein; Stefan Kalla; Hiroshi Kawabe; Nils Brose; Johann Helmut Brandstätter; Frederique Varoqueaux

Munc13 proteins are essential regulators of exocytosis. In hippocampal glutamatergic neurons, the genetic deletion of Munc13s results in the complete loss of primed synaptic vesicles (SVs) in direct contact with the presynaptic active zone membrane, and in a total block of neurotransmitter release. Similarly drastic consequences of Munc13 loss are detectable in hippocampal and striatal GABAergic neurons. We show here that, in the adult mouse retina, the two Munc13-2 splice variants bMunc13-2 and ubMunc13-2 are selectively localized to conventional and ribbon synapses, respectively, and that ubMunc13-2 is the only Munc13 isoform in mature photoreceptor ribbon synapses. Strikingly, the genetic deletion of ubMunc13-2 has little effect on synaptic signaling by photoreceptor ribbon synapses and does not prevent membrane attachment of synaptic vesicles at the photoreceptor ribbon synaptic site. Thus, photoreceptor ribbon synapses and conventional synapses differ fundamentally with regard to their dependence on SV priming proteins of the Munc13 family. Their function is only moderately affected by Munc13 loss, which leads to slight perturbations of signal integration in the retina.


Brain Research | 1993

A geometrical description of horizontal cell networks in the turtle retina

Josef Ammermüller; Wolfgang Möckel; Pal Rujan

Networks of physiologically identified H2 horizontal cells in the turtle retina were labeled by intracellular injection of Neurobiotin. We obtained a quantitative description of the neighbourhood relations in the dye-coupled cell mosaics by using the somata as centers for the Voronoi-Delaunay construction. Computational models simulating the experimental data are presented.

Collaboration


Dive into the Josef Ammermüller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reto Weiler

University of Oldenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Greschner

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge