Josef Dommen
Paul Scherrer Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Josef Dommen.
Nature | 2013
Joao Almeida; Siegfried Schobesberger; Andreas Kürten; Ismael K. Ortega; Oona Kupiainen-Määttä; Arnaud P. Praplan; Alexey Adamov; A. Amorim; Federico Bianchi; Martin Breitenlechner; A. David; Josef Dommen; Neil M. Donahue; Andrew J. Downard; Eimear M. Dunne; Jonathan Duplissy; Sebastian Ehrhart; Alessandro Franchin; R. Guida; Jani Hakala; Armin Hansel; Martin Heinritzi; Henning Henschel; Tuija Jokinen; Heikki Junninen; Maija K. Kajos; Juha Kangasluoma; Helmi Keskinen; Agnieszka Kupc; Theo Kurtén
Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid–amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid–dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Axel Metzger; Bart Verheggen; Josef Dommen; Jonathan Duplissy; André S. H. Prévôt; E. Weingartner; Ilona Riipinen; Markku Kulmala; D. V. Spracklen; Kenneth S. Carslaw; Urs Baltensperger
New particle formation in the atmosphere is an important parameter in governing the radiative forcing of atmospheric aerosols. However, detailed nucleation mechanisms remain ambiguous, as laboratory data have so far not been successful in explaining atmospheric nucleation. We investigated the formation of new particles in a smog chamber simulating the photochemical formation of H2SO4 and organic condensable species. Nucleation occurs at H2SO4 concentrations similar to those found in the ambient atmosphere during nucleation events. The measured particle formation rates are proportional to the product of the concentrations of H2SO4 and an organic molecule. This suggests that only one H2SO4 molecule and one organic molecule are involved in the rate-limiting step of the observed nucleation process. Parameterizing this process in a global aerosol model results in substantially better agreement with ambient observations compared to control runs.
Science | 2014
Francesco Riccobono; Siegfried Schobesberger; Catherine E. Scott; Josef Dommen; Ismael K. Ortega; Linda Rondo; J. Almeida; A. Amorim; Federico Bianchi; Martin Breitenlechner; A. David; Andrew J. Downard; Eimear M. Dunne; Jonathan Duplissy; Sebastian Ehrhart; Alessandro Franchin; Armin Hansel; Heikki Junninen; Maija K. Kajos; Helmi Keskinen; Agnieszka Kupc; Andreas Kürten; Alexander N. Kvashin; Ari Laaksonen; Katrianne Lehtipalo; Vladimir Makhmutov; Serge Mathot; Tuomo Nieminen; Antti Onnela; Tuukka Petäjä
Out of the Air New-particle formation from gaseous precursors in the atmosphere is a complex and poorly understood process with importance in atmospheric chemistry and climate. Laboratory studies have had trouble reproducing the particle formation rates that must occur in the natural world. Riccobono et al. (p. 717) used the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN to recreate a realistic atmospheric environment. Sulfuric acid and oxidized organic vapors in typical natural concentrations caused particle nucleation at similar rates to those observed in the lower atmosphere. Experiments in the CLOUD chamber at CERN reproduce particle nucleation rates observed in the lower atmosphere. Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Siegfried Schobesberger; Heikki Junninen; Federico Bianchi; Gustaf Lönn; Mikael Ehn; Katrianne Lehtipalo; Josef Dommen; Sebastian Ehrhart; Ismael K. Ortega; Alessandro Franchin; Tuomo Nieminen; Francesco Riccobono; Manuel A. Hutterli; Jonathan Duplissy; J. Almeida; A. Amorim; Martin Breitenlechner; Andrew J. Downard; Eimear M. Dunne; Maija K. Kajos; Helmi Keskinen; J. Kirkby; Agnieszka Kupc; Andreas Kürten; Theo Kurtén; Ari Laaksonen; Serge Mathot; Antti Onnela; Arnaud P. Praplan; Linda Rondo
Significance The formation of nanoparticles by condensable vapors in the atmosphere influences radiative forcing and therefore climate. We explored the detailed mechanism of particle formation, in particular the role of oxidized organic molecules that arise from the oxidation of monoterpenes, a class of volatile organic compounds emitted from plants. We mimicked atmospheric conditions in a well-controlled laboratory setup and found that these oxidized organics form initial clusters directly with single sulfuric acid molecules. The clusters then grow by the further addition of both sulfuric acid and organic molecules. Some of the organics are remarkably highly oxidized, a critical feature that enables them to participate in forming initial stable molecular clusters and to facilitate the first steps of atmospheric nanoparticle formation. Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions.
Nature | 2016
J. Kirkby; Jonathan Duplissy; Kamalika Sengupta; Carla Frege; H. Gordon; Christina Williamson; Martin Heinritzi; Mario Simon; Chao Yan; Joao Almeida; Jasmin Tröstl; Tuomo Nieminen; Ismael K. Ortega; Robert Wagner; Alexey Adamov; A. Amorim; Anne-Kathrin Bernhammer; Federico Bianchi; Martin Breitenlechner; Sophia Brilke; Xuemeng Chen; J. S. Craven; Antonio Dias; Sebastian Ehrhart; Alessandro Franchin; Claudia Fuchs; R. Guida; Jani Hakala; C. R. Hoyle; Tuija Jokinen
Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.
Nature | 2016
Jasmin Tröstl; Wayne K. Chuang; H. Gordon; Martin Heinritzi; Chao Yan; Ugo Molteni; Lars Ahlm; Carla Frege; Federico Bianchi; Robert Wagner; Mario Simon; Katrianne Lehtipalo; Christina Williamson; J. S. Craven; Jonathan Duplissy; Alexey Adamov; Joao Almeida; Anne-Kathrin Bernhammer; Martin Breitenlechner; Sophia Brilke; Antonio Dias; Sebastian Ehrhart; Alessandro Franchin; Claudia Fuchs; R. Guida; M. Gysel; Armin Hansel; C. R. Hoyle; Tuija Jokinen; Heikki Junninen
About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10−4.5 micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10−4.5 to 10−0.5 micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Neil M. Donahue; Kaytlin M. Henry; Thomas F. Mentel; Astrid Kiendler-Scharr; C. Spindler; Birger Bohn; T. Brauers; Hans P. Dorn; Hendrik Fuchs; R. Tillmann; Andreas Wahner; Harald Saathoff; K.-H. Naumann; O. Möhler; Thomas Leisner; Lars Peter Müller; Marc-Christopher Reinnig; Thorsten Hoffmann; Kent Salo; Mattias Hallquist; Mia Frosch; Merete Bilde; Torsten Tritscher; Peter Barmet; Arnaud P. Praplan; P. F. DeCarlo; Josef Dommen; André S. H. Prévôt; Urs Baltensperger
The Multiple Chamber Aerosol Chemical Aging Study (MUCHACHAS) tested the hypothesis that hydroxyl radical (OH) aging significantly increases the concentration of first-generation biogenic secondary organic aerosol (SOA). OH is the dominant atmospheric oxidant, and MUCHACHAS employed environmental chambers of very different designs, using multiple OH sources to explore a range of chemical conditions and potential sources of systematic error. We isolated the effect of OH aging, confirming our hypothesis while observing corresponding changes in SOA properties. The mass increases are consistent with an existing gap between global SOA sources and those predicted in models, and can be described by a mechanism suitable for implementation in those models.
Science | 2016
Federico Bianchi; Jasmin Tröstl; Heikki Junninen; Carla Frege; S. Henne; C. R. Hoyle; Ugo Molteni; Erik Herrmann; Alexey Adamov; Nicolas Bukowiecki; Xuemeng Chen; Jonathan Duplissy; M. Gysel; Manuel A. Hutterli; Juha Kangasluoma; Jenni Kontkanen; Andreas Kürten; H. E. Manninen; S. Münch; Otso Peräkylä; Tuukka Petäjä; Linda Rondo; Christina Williamson; E. Weingartner; Joachim Curtius; Douglas R. Worsnop; Markku Kulmala; Josef Dommen; Urs Baltensperger
From neutral to new Many of the particles in the troposphere are formed in situ, but what fraction of all tropospheric particles do they constitute and how exactly are they made? Bianchi et al. report results from a high-altitude research station. Roughly half of the particles were newly formed by the condensation of highly oxygenated multifunctional compounds. A combination of laboratory results, field measurements, and model calculations revealed that neutral nucleation is more than 10 times faster than ion-induced nucleation, that particle growth rates are size-dependent, and that new particle formation occurs during a limited time window. Science, this issue p. 1109 New particles form in the free troposphere mainly through condensation of highly oxygenated compounds. New particle formation (NPF) is the source of over half of the atmosphere’s cloud condensation nuclei, thus influencing cloud properties and Earth’s energy balance. Unlike in the planetary boundary layer, few observations of NPF in the free troposphere exist. We provide observational evidence that at high altitudes, NPF occurs mainly through condensation of highly oxygenated molecules (HOMs), in addition to taking place through sulfuric acid–ammonia nucleation. Neutral nucleation is more than 10 times faster than ion-induced nucleation, and growth rates are size-dependent. NPF is restricted to a time window of 1 to 2 days after contact of the air masses with the planetary boundary layer; this is related to the time needed for oxidation of organic compounds to form HOMs. These findings require improved NPF parameterization in atmospheric models.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Andreas Kürten; Tuija Jokinen; Mario Simon; Mikko Sipilä; Nina Sarnela; Heikki Junninen; Alexey Adamov; J. Almeida; A. Amorim; Federico Bianchi; Martin Breitenlechner; Josef Dommen; Neil M. Donahue; Jonathan Duplissy; Sebastian Ehrhart; Alessandro Franchin; Jani Hakala; Armin Hansel; Martin Heinritzi; Manuel A. Hutterli; Juha Kangasluoma; J. Kirkby; Ari Laaksonen; Katrianne Lehtipalo; Markus Leiminger; Vladimir Makhmutov; Serge Mathot; Antti Onnela; Tuukka Petäjä; Arnaud P. Praplan
Significance A significant fraction of atmospheric aerosols is formed from the condensation of low-volatility vapors. These newly formed particles can grow, become seeds for cloud particles, and influence climate. New particle formation in the planetary boundary layer generally proceeds via the neutral channel. However, unambiguous identification of neutral nucleating clusters has so far not been possible under atmospherically relevant conditions. We explored the system of sulfuric acid, water, and dimethylamine in a well-controlled laboratory experiment and measured the time-resolved concentrations of neutral clusters. Clusters containing up to 14 sulfuric acid and 16 dimethylamine molecules were observed. Our results demonstrate that a cluster containing as few as two sulfuric acid and one or two dimethylamine molecules is already stable against evaporation. For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions. These measurements bridge the gap between the molecular and particle perspectives of nucleation, revealing the fundamental processes involved in particle formation and growth. The neutral clusters are found to form at or close to the kinetic limit where particle formation is limited only by the collision rate of SA molecules. Even though the neutral particles are stable against evaporation from the SA dimer onward, the formation rates of particles at 1.7-nm size, which contain about 10 SA molecules, are up to 4 orders of magnitude smaller compared with those of the dimer due to coagulation and wall loss of particles before they reach 1.7 nm in diameter. This demonstrates that neither the atmospheric particle formation rate nor its dependence on SA can simply be interpreted in terms of cluster evaporation or the molecular composition of a critical nucleus.
Journal of Geophysical Research | 1997
André S. H. Prévôt; Johannes Staehelin; Gregory L. Kok; Richard D. Schillawski; B. Neininger; Thomas Staffelbach; Albrecht Neftel; Heini Wernli; Josef Dommen
In Switzerland, measurement campaigns including aircraft measurements were carried out in the summers of 1992 and 1993 as part of the Pollution and Meteorology (POLLUMET) study. Ozone (O 3 ) concentrations, up to 185 ppb, with a large spatial variability were found south of the Alps in the afternoon. Comparison to measurements north of the Alps shows that these concentration levels are extraordinarily high for central Europe. Backward trajectories reveal that the highest O 3 levels were found 4-5 hours downwind of Milan, Italy. The measurements suggest a reactive organic gas (ROG) sensitive O 3 production regime 1-3 hours downwind in the plume, and a NO x (sum of nitrogen oxide (NO) and nitrogen dioxide (NO 2 )) limitation in air masses not affected by the Milan plume. Air masses originating north of Milan are probably close to the transition zone between the two photochemical regimes. This was found by using measurements of total odd nitrogen (NO y ), NO, NO 2 , formaldehyde (HCHO), and hydrogen peroxide (H 2 0 2 ) yielding indicators for ROG and NO, sensitive O 3 production. The slope of ozone versus NO z (=NO y -NO x : photochemical products of NO x ) were markedly higher in NO x limited conditions (ΔO 3 /ΔNO z = 13.6) than in air masses close to the transition zone (Δ0 3 /ΔNO z = 4.2).