Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Josef Fusek is active.

Publication


Featured researches published by Josef Fusek.


Mini-reviews in Medicinal Chemistry | 2007

Treatment of Organophosphate Intoxication Using Cholinesterase Reactivators:Facts and Fiction

Jiri Bajgar; Josef Fusek; Kamil Kuca; Lucie Bartosova; Daniel Jun

Basic part of the current standard treatment of organophosphate (OP) agent poisoning is administration of cholinesterase reactivators. It includes different types of oximes with a similar basic structure differing by the number of pyridinium rings and by the position of the oxime group in the pyridinium ring. Oximes hydrolytically cleave the organophosphates from acetylcholinesterase (AChE), restoring enzymatic function. This reactivation of AChE is dependent on the type of the agent and, on the reactivator used. From the common oximes, mono- and bisquaternary pyridinium oximes are more or less frequently used in clinical practice such as pralidoxime, obidoxime, trimedoxime, and HI-6. Though there are data on a good therapeutic effects of reactivators, some attempts to undermine the role of reactivators as effective antidotes against OP poisoning have been made. Some arguments on the necessity of their administration following OP poisoning are discussed with the aim to resolve the question on their effective use, possible repeated administration in the treatment of OP poisoning, their peripheral and central effects including questions on their penetration through the blood brain barrier as well as a possibility to achieve their effective concentration for AChE reactivation in the brain. Reactivation of cholinesterases in the peripheral and central nervous system is described and it is underlined its importance for the survival or death of the organism poisoned with OP. An universality of oximes able to reactivate AChE inhibited by all OP is questioned and trends (molecular modelling using neural network, structure-activity relationship, combination of reactivation and anticholinergic properties in one molecule) for future research are characterized.


Current Drug Metabolism | 2007

Cholinesterase Reactivators: The Fate and Effects in the Organism Poisoned with Organophosphates/Nerve Agents

Jiri Bajgar; Kamil Kuca; Daniel Jun; Lucie Bartosova; Josef Fusek

Understanding the mechanism of action of organophosphates (OP)/nerve agents -- irreversible acetylcholinesterase (AChE, EC 3.1.1.7) inhibition at the cholinergic synapses followed by metabolic dysbalance of the organism -- two therapeutic principles for antidotal treatment are derived. The main drugs are anticholinergics that antagonize the effects of accumulated acetylcholine at the cholinergic synapses and cholinesterase reactivators (oximes) reactivating inhibited AChE. Anticonvulsants such as diazepam are also used to treat convulsions. Though there are experimental data on a good therapeutic effects of reactivators, some attempts to underestimate the role of reactivators as effective antidotes against OP poisoning have been made. Some arguments on the necessity of their administration following OP poisoning are discussed. Their distribution patterns and some metabolic and pharmacological effects are described with the aim to resolve the question on their effective use, possible repeated administration in the treatment of OP poisoning, their peripheral and central effects including questions on their penetration through the blood brain barrier as well as a possibility to achieve their effective concentration for AChE reactivation in the brain. Reactivation of cholinesterases in the peripheral and central nervous system is described and it is underlined its importance for the survival or death of the organism poisoned with OP. Metabolization and some other effects of oximes (not connected with AChE reactivation) are discussed (e.g. forming of the phosphonylated oxime, parasympatholytic action, hepatotoxicity, behavioral changes etc.). An universality of oximes able to reactivate AChE inhibited by all OP is questioned and therefore, needs of development of new oximes is underlined.


Current Medicinal Chemistry | 2010

Interaction of Nerve Agent Antidotes with Cholinergic Systems

Ondrej Soukup; Gunnar Tobin; U.K. Kumar; Jiří Binder; J. Proska; Daniel Jun; Josef Fusek; Kamil Kuca

The poisoning with organophosphorus compounds represents a life threatening danger especially in the time of terroristic menace. No universal antidote has been developed yet and other therapeutic approaches not related to reactivation of acetylcholinesterase are being investigated. This review describes the main features of the cholinergic system, cholinergic receptors, cholinesterases and their inhibitors. It also focuses on the organophosphorus nerve agents, their properties, effects and a large part describes various possibilities in treatments, mainly traditional oxime therapies based on reactivation of AChE. Furthermore, non-cholinesterase coupled antidotal effects of the oximes are thoroughly discussed. These antidotal effects principally include oxime interactions with muscarinic and nicotinic receptors.


Chemico-Biological Interactions | 2008

An attempt to assess functionally minimal acetylcholinesterase activity necessary for survival of rats intoxicated with nerve agents.

Jiri Bajgar; Josef Fusek; Jiri Kassa; Daniel Jun; Kamil Kuca; Petr Hájek

Acetylcholinesterase (AChE, EC 3.1.1.7) is an important enzyme for cholinergic nerve transmission. The action of toxic organophosphates such as nerve agents is based on AChE inhibition. The death following acute nerve agent poisoning is due to central or peripheral respiratory/cardiac failure. Therefore, the changes in AChE activity following nerve agents acting predominantly on the central (sarin, soman) or peripheral (VX) level were studied. It is known that AChE activity in different structures exists in relative excess. Female Wistar rats intoxicated with sarin, soman, and VX in different doses (0.5-2.0 x LD(50)) were divided into groups of survived and died animals. AChE activities in diaphragm, brain parts (pontomedullar area, frontal cortex, basal ganglia, in some cases other parts of the brain) were determined and the rest of activity (in %) was correlated with survival/death of animals. More precise elucidation of action of nerve agents and the assessment of minimal AChE activity in different organs compatible with the survival of organism poisoned with nerve agents were the aims of this study.


Current Medicinal Chemistry | 2011

Macrophage-Assisted Inflammation and Pharmacological Regulation of the Cholinergic Anti-Inflammatory Pathway

Miroslav Pohanka; Svatava Snopková; Kateřina Havlíčková; Pavel Boštík; Zuzana Šinkorová; Josef Fusek; Kamil Kuca; Jiří Pikula

Macrophages play an important role in the immune system. They also participate in multiple processes including angiogenesis and triggering of inflammation. The present study summarizes pieces of knowledge on the importance of macrophages in disease, especially the inflammation. Special attention is paid to the cholinergic anti-inflammatory pathway (CAP) associated with the nicotinic acetylcholine receptor (nAChR) and the parasympathetic nervous system. The current pharmacological effectiveness in suppressing the inflammation in general and the septic shock in particular, is limited. CAP was discovered recently and it seems to be a suitable target for the development of new drugs. Moreover, available drugs binding to either nAChR or acetylcholinesterase (AChE) are candidates for either an inhibition or enhancement of CAP. Though the current scientific databases do not include all necessary data on the association of CAP with body functions and the research is quite intensive, the objective of the present review is to introduce the current trends and to critically evaluate CAP and macrophage-associated pathways.


Biomedicine & Pharmacotherapy | 2010

Novel acetylcholinesterase reactivator K112 and its cholinergic properties

Ondrej Soukup; Zdena Kristofikova; J. Proska; Gunnar Tobin; Jiri Patocka; Jan Marek; Daniel Jun; Josef Fusek; Daniela Ripova; Kamil Kuca

The oxime reactivator K112 is a member of the new group of xylene linker-containing AChE reactivators. Its cholinergic properties could be of importance at OP poisoning and are not related to the AChE reactivation that has been studied. It has been found that, despite of reactivating potency, this compound has additional effects. These cholinergic effects include a weak inhibition of AChE (IC(50)=43.8 ± 4.88 μM), inhibition of binding to the porcine muscarinic M2 receptor (IC(50)=4.36 μM) and finally, the inhibition of HACU (68.4 ± 9.9%), a key regulatory step in the synthesis of ACh. The inhibition of the binding of (3H)-HC-3 (64.7 ± 4.7%) and the influence on the membrane fluidity have also been observed. Blocking properties of K112 on the muscarinic receptors have been revealed in the in vitro experiment (rat urinary bladder) and in the in vivo experiment (rat heart BPM) as well. All these cholinergic properties could significantly contribute to the antidotal effect of K112 at the poisoning by the organophosphates.


Environmental Toxicology and Pharmacology | 2011

The effect of oxime reactivators on muscarinic receptors: Functional and binding examinations

Ondrej Soukup; U.K. Kumar; J. Proska; L. Bratova; A. Adem; Daniel Jun; Josef Fusek; Kamil Kuca; Gunnar Tobin

The antidotal treatment of organophosphorus poisoning is still a problematic issue since no versatile antidote has been developed yet. In our study, we focused on an interesting property, which does not relate to the reactivation of inhibited acetylcholinesterase (AChE) of some oximes, but refers to their anti-muscarinic effects which may contribute considerably to their treatment efficacy. One standard reactivator (HI-6) and two new compounds (K027 and K203) have been investigated for their antimuscarinic properties. Anti-muscarinic effects were studies by means of an in vitro stimulated atrium preparation (functional test), the [(3)H]-QNB binding assay and G-protein coupled receptor assay (GPCR, beta-Arrestin Assay). Based on the functional data HI-6 demonstrates the highest anti-muscarinic effect. However, only when comparing [(3)H]-QNB binding results and GPCR data, K203 shows a very promising compound with regard to anti-muscarinic potency. The therapeutic impact of these findings has been discussed.


Chemico-Biological Interactions | 2010

Tabun-inhibited rat tissue and blood cholinesterases and their reactivation with the combination of trimedoxime and HI-6 in vivo.

Jiri Bajgar; Jana Zdarova Karasova; Jiri Kassa; Jiri Cabal; Josef Fusek; Vaclav Blaha; Sandra Tesarova

Up to now, intensive attempts to synthesize a universal reactivator able to reactivate cholinesterases inhibited by all types of nerve agents/organophosphates were not successful. Therefore, another approach using a combination of two reactivators differently reactivating enzyme was used: in rats poisoned with tabun and treated with combination of atropine (fixed dose) and different doses of trimedoxime and HI-6, changes of acetylcholinesterase activities (blood, diaphragm and different parts of the brain) were studied. An increase of AChE activity was observed following trimedoxime treatment depending on its dose; HI-6 had very low effect. Combination of both oximes showed potentiation of their reactivation efficacy; this potentiation was expressed for peripheral AChE (blood, diaphragm) and some parts of the brain (pontomedullar area, frontal cortex); AChE in the basal ganglia was relatively resistant. These observations suggest that the action of combination of oximes in vivo is different from that observed in vitro.


Drug and Chemical Toxicology | 2007

Changes of Cholinesterase Activities in the Rat Blood and Brain After Sarin Intoxication Pretreated with Butyrylcholinesterase

Jiri Bajgar; Lucie Bartosova; Kamil Kuca; Daniel Jun; Josef Fusek

After sarin inhalation exposure of rats pretreated with equine serum butyrylcholinesterase (EqBuChE), cholinesterase activities of the whole blood, acetylcholinesterase (AChE) in erythrocytes, pontomedullar area, frontal cortex, and striatum of the brain, and plasma butyrylcholinesterase (BuChE) were determined. Using different doses of EqBuChE as a pretreatment (intraperitoneal injection), dose-dependent increases in plasma BuChE activity and no changes in the erythrocyte and brain AChE activities were demonstrated. Decreases in plasma BuChE activity and red blood cells (RBC) and brain AChE activities were observed in control rats after sarin inhalation exposure without EqBuChE pretreatment. In rats pretreated with EqBuChE, this inhibition was lower compared with control animals not only in the blood but also in the brain structures studied. These results demonstrate protective effects of EqBuChE pretreatment in rats intoxicated with sublethal concentrations of sarin by inhalation.


Drug and Chemical Toxicology | 2009

Different inhibition of acetylcholinesterase in selected parts of the rat brain following intoxication with VX and Russian VX

Petr Hájek; Jiri Bajgar; Dasa Slizova; Otakar Krs; Kamil Kuca; Lukas Capek; Josef Fusek

Differences between acetylcholinesterase (AChE) inhibition in the brain structures following VX and RVX exposure are not known as well as information on the possible correlation of biochemical and histochemical methods detecting AChE activity. Therefore, inhibition of AChE in different brain parts detected by histochemical and biochemical techniques was compared in rats intoxicated with VX and RVX. AChE activities in defined brain regions 30 min after treating rats with VX and Russian VX intramuscularly (1.0 × LD50) were determined by using biochemical and histochemical methods. AChE inhibition was less expressed for RVX, in comparison with VX. Frontal cortex and pontomedullar areas containing ncl. reticularis has been found as the most sensitive areas for the action of VX. For RVX, these structures were determined to be frontal cortex, dorsal septum, and hippocampus, respectively. Histochemical and biochemical results were in good correlation (Rxy = 0.8337). Determination of AChE activity in defined brain structures was a more sensitive parameter for VX or RVX exposure than the determination of AChE activity in the whole-brain homogenate. This activity represents a “mean” of the activities in different structures. Thus, AChE activity is the main parameter investigated in studies searching for target sites following nerve-agent poisoning contributing to better understanding of toxicodynamics of nerve agents.

Collaboration


Dive into the Josef Fusek's collaboration.

Top Co-Authors

Avatar

Kamil Kuca

University of Hradec Králové

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gunnar Tobin

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petr Hájek

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Dasa Slizova

Charles University in Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge