Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Josef Nösberger is active.

Publication


Featured researches published by Josef Nösberger.


Science | 2006

Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations

Stephen P. Long; Elizabeth A. Ainsworth; Andrew D. B. Leakey; Josef Nösberger; Donald R. Ort

Model projections suggest that although increased temperature and decreased soil moisture will act to reduce global crop yields by 2050, the direct fertilization effect of rising carbon dioxide concentration ([CO2]) will offset these losses. The CO2 fertilization factors used in models to project future yields were derived from enclosure studies conducted approximately 20 years ago. Free-air concentration enrichment (FACE) technology has now facilitated large-scale trials of the major grain crops at elevated [CO2] under fully open-air field conditions. In those trials, elevated [CO2] enhanced yield by ∼50% less than in enclosure studies. This casts serious doubt on projections that rising [CO2] will fully offset losses due to climate change.


Plant Physiology | 1996

Stimulation of Symbiotic N2 Fixation in Trifolium repens L. under Elevated Atmospheric pCO2 in a Grassland Ecosystem.

Silvia Zanetti; Ueli A. Hartwig; Andreas Lüscher; Thomas Hebeisen; Marco Frehner; Bernt U. Fischer; George R. Hendrey; Herbert Blum; Josef Nösberger

Symbiotic N2 fixation is one of the main processes that introduces N into terrestrial ecosystems. As such, it may be crucial for the sequestration of the extra C available in a world of continuously increasing atmospheric CO2 partial pressure (pCO2). The effect of elevated pCO2 (60 Pa) on symbiotic N2 fixation (15N-isotope dilution method) was investigated using Free-Air-CO2-Enrichment technology over a period of 3 years. Trifolium repens was cultivated either alone or together with Lolium perenne (a nonfixing reference crop) in mixed swards. Two different N fertilization levels and defoliation frequencies were applied. The total N yield increased consistently and the percentage of plant N derived from symbiotic N2 fixation increased significantly in T. repens under elevated pCO2. All additionally assimilated N was derived from symbiotic N2 fixation, not from the soil. In the mixtures exposed to elevated pCO2, an increased amount of symbiotically fixed N (+7.8, 8.2, and 6.2 g m-2 a-1 in 1993, 1994, and 1995, respectively) was introduced into the system. Increased N2 fixation is a competitive advantage for T. repens in mixed swards with pasture grasses and may be a crucial factor in maintaining the C:N ratio in the ecosystem as a whole.


Soil Biology & Biochemistry | 2000

Symbiotic N2 fixation of various legume species along an altitudinal gradient in the Swiss Alps.

Katja Jacot; Andreas Lüscher; Josef Nösberger; Ueli A. Hartwig

Abstract Symbiotic N2 fixation may be an important source of N for legumes in alpine ecosystems, though, this has hardly been investigated. Symbiotic N2 fixation in nine legume species in permanent grassland over an altitudinal gradient (from 900 up to 2600 m a.s.l.) was investigated in the Swiss Alps on strictly siliceous soils. To assess symbiotic N2 fixation, an enriched 15N isotope dilution method was established for low N input, permanent grasslands and was evaluated with the 15N natural abundance method. The non-N2-fixing reference species used in both methods differed significantly in their 15N atom%-excess. However, when several reference species were combined, the enriched 15N isotope dilution method was reliable and led to the conclusion that up to their altitudinal limit, legumes may acquire from 59% to more than 90% of their N through symbiotic N2 fixation depending on the species. These findings were confirmed by the 15N natural abundance method. Even at the legumes’ altitudinal limit all plants investigated showed apparently active nodules. Moreover, a clear host-microsymbiont specificity between plant and rhizobia was evident at high altitudes. This suggests that symbiotic N2 fixation is well adapted to the climatic and acidic soil conditions in the Alps and contributes, up to the altitudinal limit, a significant amount of N to the N nutrition of legumes.


Plant and Soil | 1996

Soil moisture and potassium affect the performance of symbiotic nitrogen fixation in faba bean and common bean

U. Ravi Sangakkara; Ueli A. Hartwig; Josef Nösberger

Potassium (K) is reported to improve plants resistance against environmental stress. A frequently experienced stress for plants in the tropics is water shortage. It is not known if sufficient K supply would help plants to partially overcome the effects of water stress, especially that of symbiotic nitrogen fixation which is often rather low in the tropics when compared to that of temperate regions. Thus, the impact of three levels of fertilizer potassium (0.1, 0.8 and 3.0 mM K) on symbiotic nitrogen fixation was evaluated with two legumes under high (field capacity to 25% depletion) and low (less than 50% of field capacity) water regimes. Plants were grown in single pots in silica sand under controlled conditions with 1.5 mM N (15N enriched NH4NO3). The species were faba bean (Vicia faba L.), a temperate, amide producing legume and common bean (Phaseolus vulgaris L.), a tropical, ureide producing species. In both species, 0.1 mM K was insufficient for nodulation at both moisture regimes, although plant growth was observed. The supply of 0.8 or 3.0 mM K allowed nodulation and subsequent nitrogen fixation which appeared to be adequate for respective plant growth. High potassium supply had a positive effect on nitrogen fixation, on shoot and root growth and on water potential in both water regimes. Where nodulation occurred, variations caused by either K or water supply had no consequences on the percentage of nitrogen derived from the symbiosis. The present data indicate that K can apparently alleviate water shortage to a certain extent. Moreover it is shown that the symbiotic system in both faba bean and common bean is less tolerant to limiting K supply than plants themselves. However, as long as nodulation occurs, N assimilation from the symbiotic source is not selectively affected by K as opposed to N assimilation from fertilizer.


Plant and Soil | 2000

Due to symbiotic N2 fixation, five years of elevated atmospheric pCO2 had no effect on the N concentration of plant litter in fertile, mixed grassland

Ueli A. Hartwig; Andreas Lüscher; Markus Daepp; Herbert Blum; Jean-Francois Soussana; Josef Nösberger

Experimental findings indicate that, in terrestrial ecosystems, nitrogen cycling changes under elevated partial pressure of atmospheric CO2 (pCO2). It was suggested that the concentration of N in plant litter as well as the amount of litter are responsible for these changes. However, for grassland ecosystems, there have been no relevant data available to support this hypothesis. Data from five years of the Swiss FACE experiment show that, under fertile soil conditions in a binary plant community consisting of Lolium perenne L. and Trifolium repens L., the concentration of litter N does not change under elevated atmospheric pCO2; this applies to harvest losses, stubble, stolons and roots as the sources of litter. This is in strong contrast to the CO2 response of L. perenne swards without associated legumes; in this case the above-ground concentration of biomass N decreased substantially. Increased symbiotic N2 fixation in T. repens nodules and a greater proportion of the N-rich T. repens in the community are regarded as the main mechanisms that buffer the increased C introduction into the ecosystem under elevated atmospheric pCO2. Our data also suggest that elevated atmospheric pCO2 results in greater amounts of litter, mainly due to increased root biomass production. This study indicates that, in a fertile grassland ecosystem with legumes, the concentration of N in plant litter is not affected by elevated atmospheric pCO2 and, thus, cannot explain CO2-induced changes in the cycling of N.


Plant and Soil | 2000

The relative contribution of symbiotic N2 fixation and other nitrogen sources to grassland ecosystems along an altitudinal gradient in the Alps.

Katja Jacot; Andreas Lüscher; Josef Nösberger; Ueli A. Hartwig

The significance of symbiotic N2 fixation in legumes (Trifolium alpinum L., T. nivale Sieber, T. pratense L., T. badium Schreber, T. thalii Vill., T. repens L., Lotus alpinus [DC.] Schleicher, L. corniculatus L., Vicia sativa L.) and other N sources for the N budget of grassland ecosystems was studied along an altitudinal gradient in the Swiss Alps. The total annual symbiotic N2 fixation was compared with other sources of N for plant growth of the total plant community (mineralisation and wet deposition). The contribution of symbiotically fixed N to total above-ground N yield of the swards decreased from at least 16% to 9% with increasing altitude where legumes were present. This decrease was due to a decrease in the yield proportion of legumes from 15% at 900 and 1380 m a.s.l. to 5% at 2100 and 2300 m a.s.l. (no legumes were found above 2750 m a.s.l.) and not to a decline in the activity of symbiotic N2 fixation. With increasing altitude legumes are more patchily distributed. The high symbiotic N2 fixation of individual plants up to their altitudinal limit is not primarily the result of low mineral N availability since an addition of NH4+ or NO3− fertiliser at 2300 m a.s.l. led either to no decrease or only to a minor decrease in symbiotic N2 fixation. At 1380 m a.s.l., N mineralisation (13.45 g N m−2 yr−1) appeared to be the main source of N for growth of the sward; N from symbiosis (at least 1.0 g to 2.6 g N m−2 yr−1) and wet deposition (0.4 g to 0.6 g m−2 yr−1) was not a significant N source for plant growth at this altitude. At 2100 m a.s.l., the combined amounts of N from symbiotic N2 fixation (at least 0.1 g N m−2 yr−1) and wet deposition (0.3 g N m−2 yr−1) appeared to be similarly important for plant growth as soil N mineralisation (0.47 g N m−2 yr−1). At high altitudes, wet N deposition and symbiotic N2 fixation together represent a significant source of N for the grassland ecosystem while at low altitudes these N inputs appear to be much less important.


Plant and Soil | 2000

Soil mineral nitrogen availability was unaffected by elevated atmospheric pCO2 in a four year old field experiment (Swiss FACE)

Vít Gloser; Marta Ježíková; Andreas Lüscher; Marco Frehner; Herbert Blum; Josef Nösberger; Ueli A. Hartwig

The effect of elevated (60 Pa) atmospheric carbon dioxide partial pressure (pCO2) and N fertilisation on the availability of mineral N and on N transformation in the soil of a Lolium perenne L. monoculture was investigated in the Swiss FACE (Free Air Carbon dioxide Enrichment) experiment. The apparent availability of nitrate and ammonium for plants was estimated during a representative, vegetative re-growth period at weekly intervals from the sorption of the minerals to mixed-bed ion-exchange resin bags at a soil depth of 5 cm. N mineralisation was measured using sequential coring and in situ exposure of soil cores in the top 10 cm of the soil before and after the first cut in spring 1997. High amounts of mineral N were bound to the ion exchange resin during the first week of re-growth. This was probably the combined result of the fertiliser application, the weak demand for N by the newly cut sward and presumably high rates of root decay and exudation after cutting the sward. During the first 2 weeks after the application of fertiliser N at the first cut, there was a dramatic reduction in available N; N remained low during the subsequent weeks of re-growth in all treatments. Overall, nitrate was the predominant form of mineral N that bound to the resin for the duration of the experiment. Apparently, there was always more nitrate than ammonium available to the plants in the high N fertilisation treatment for the whole re-growth period. Apparent N availability was affected significantly by elevated pCO2 only in the first week after the cut; under high N fertilisation, elevated pCO2 increased the amount of mineral N that was apparently available to the plants. Elevated pCO2 did not affect apparent net transformation of N, loss of N or uptake of N by plants. The present data are consistent with earlier results and suggest that the amount of N available to plants from soil resources does not generally increase under elevated atmospheric pCO2. Thus, a possible limiting effect of N on primary production could become more stringent under elevated atmospheric pCO2 as the demand of the plant for N increases.


Plant Physiology | 1993

Current Nitrogen Fixation Is Involved in the Regulation of Nitrogenase Activity in White Clover (Trifolium repens L.)

I. Heim; Ueli A. Hartwig; Josef Nösberger

Previous studies have shown that nitrogenase activity decreases dramatically after defoliation, presumably because of an increase in the O2 diffusion resistance in the infected nodules. It is not known how this O2 diffusion resistance is regulated. The aim of this study was to test the hypothesis that current N2 fixation (ongoing flux of N2 through nitrogenase) is involved in the regulation of nitrogenase activity in white clover (Trifolium repens L. cv Ladino) nodules. We compared the nitrogenase activity of plants that were prevented from fixing N2 (by continuous exposure of their nodulated root system to an Ar:O2 [80:20] atmosphere) with that of plants allowed to fix N2 (those exposed to N2:O2, 80:20). Nitrogenase activity was determined as the amount of H2 evolved under Ar:O2. An open flow system was used. In experiment I, 6 h after complete defoliation and the continuous prevention of N2 fixation, nitrogenase activity was higher by a factor of 2 compared with that in plants allowed to fix N2 after leaf removal. This higher nitrogenase activity was associated with a lower O2 limitation (measured as the partial pressure of O2 required for highest nitrogenase activity). In experiment II, the nitrogenase activity of plants prevented from fixing N2 for 2 h before leaf removal showed no response to defoliation. The extent to which nitrogenase activity responded to defoliation was different in plants allowed to fix N2 and those that were prevented from doing so in both experiments. This leads to the conclusion that current N2 fixation is directly involved in the regulation of nitrogenase activity. It is suggested that an N feedback mechanism triggers such a response as a result of the loss of the plants N sink strength after defoliation. This concept offers an alternative to other hypotheses (e.g. interruption of current photosynthesis, carbohydrate deprivation) that have been proposed to explain the immediate decrease in nitrogenase activity after defoliation.


Australian Journal of Plant Physiology | 2000

Nitrogen plays a major role in leaves when source-sink relations change: C and N metabolism in Lolium perenne growing under free air CO2 enrichment

Hubert Isopp; Marco Frehner; José P. F. Almeida; Herbert Blum; Markus Daepp; Ueli A. Hartwig; Andreas Lüscher; Daniel Suter; Josef Nösberger

Swards of Lolium perenne L. were grown in the field in a long-term free air CO2 enrichment (FACE) facility. The CO2 treatment was combined with two levels of N fertilization and regular defoliation, which resulted in plants with a wide range of source-sink relations. C and N metabolism were investigated to assess the role of carbohydrate and nitrogenous compounds in leaves in indicating source-sink relations. Sucrose exhibited the largest changes in contents during the day-night cycle; therefore, it was identified as the main short-term storage compound for night-time export. Fructan accumulation indicated the degree of surplus C supply in the source compared to C use in sinks. Nitrate content depended mainly on N fertilization, and was reduced under elevated pCO2. Nitrate appeared to indicate a current surplus of available N relative to the need for growth. Amino acid content responded strongly to N fertilization but decreased only slightly under elevated pCO2. Protein content, however, decreased significantly under elevated pCO2. The patterns of diurnal changes of C or N compounds did not differ between CO2 treatments. Down-regulation of photosynthesis appeared to occur when plants were extremely N-limited as under elevated pCO2, low N and at a late regrowth stage.


Plant and Soil | 1999

Partitioning of P and the activity of root acid phosphatase in white clover (Trifolium repens L.) are modified by increased atmospheric CO2 and P fertilisation

José P. F. Almeida; Andreas Lüscher; Marco Frehner; Astrid Oberson; Josef Nösberger

The growth response of white clover (Trifolium repens L.) to the expected increase in atmospheric partial pressure of CO2 (pCO2) may depend on P availability. A decrease in the rate of transpiration due to increased pCO2 may reduce the amount of P transported to the shoot, thereby causing a change in the partitioning of P between the root and shoot. To test these hypotheses, four concentrations of P in the nutrient solution, combined with two pCO2 treatments, were applied to nodulated white clover plants. Compared to ambient pCO2 (35 Pa), twice ambient pCO2 (70 Pa) reduced the rate of transpiration but did not impair the total P uptake per plant. However, at twice ambient pCO2 and a moderate to high supply of P, concentrations of structural P and soluble P (Pi) were lower in the leaves and higher in the roots. The activity of root acid phosphatase was lower at twice ambient pCO2 than at ambient pCO2; it depended on the Pi concentration in the roots. At the highest P concentration, twice ambient pCO2 stimulated photosynthesis and the growth rate of the plant without affecting the concentration of nonstructural carbohydrates in the leaves. However, at the lower P concentrations, plants at twice ambient pCO2 lost their stimulation of photosynthesis in the afternoon, they accumulated nonstructural carbohydrates in the leaves and their growth rate was not stimulated; indicating C-sink limitation of growth. P nutrition will be crucial to the growth of white clover under the expected future conditions of increased pCO2.

Collaboration


Dive into the Josef Nösberger's collaboration.

Top Co-Authors

Avatar

Ueli A. Hartwig

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Herbert Blum

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Zanetti

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Thomas Hebeisen

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge