Josef van Genabith
Dublin City University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Josef van Genabith.
meeting of the association for computational linguistics | 2004
Aoife Cahill; Michael Burke; Ruth O'Donovan; Josef van Genabith; Andy Way
This paper shows how finite approximations of long distance dependency (LDD) resolution can be obtained automatically for wide-coverage, robust, probabilistic Lexical-Functional Grammar (LFG) resources acquired from treebanks. We extract LFG subcategorisation frames and paths linking LDD reentrancies from f-structures generated automatically for the Penn-II treebank trees and use them in an LDD resolution algorithm to parse new text. Unlike (Collins, 1999; Johnson, 2000), in our approach resolution of LDDs is done at f-structure (attribute-value structure representations of basic predicate-argument or dependency structure) without empty productions, traces and coindexation in CFG parse trees. Currently our best automatically induced grammars achieve 80.97% f-score for f-structures parsing section 23 of the WSJ part of the Penn-II treebank and evaluating against the DCU 1051 and 80.24% against the PARC 700 Dependency Bank (King et al., 2003), performing at the same or a slightly better level than state-of-the-art hand-crafted grammars (Kaplan et al., 2004).
meeting of the association for computational linguistics | 2006
John Judge; Aoife Cahill; Josef van Genabith
This paper describes the development of QuestionBank, a corpus of 4000 parse-annotated questions for (i) use in training parsers employed in QA, and (ii) evaluation of question parsing. We present a series of experiments to investigate the effectiveness of QuestionBank as both an exclusive and supplementary training resource for a state-of-the-art parser in parsing both question and non-question test sets. We introduce a new method for recovering empty nodes and their antecedents (capturing long distance dependencies) from parser output in CFG trees using LFG f-structure reentrancies. Our main findings are (i) using QuestionBank training data improves parser performance to 89.75% labelled bracketing f-score, an increase of almost 11% over the baseline; (ii) back-testing experiments on non-question data (Penn-II WSJ Section 23) shows that the retrained parser does not suffer a performance drop on non-question material; (iii) ablation experiments show that the size of training material provided by QuestionBank is sufficient to achieve optimal results; (iv) our method for recovering empty nodes captures long distance dependencies in questions from the ATIS corpus with high precision (96.82%) and low recall (39.38%). In summary, QuestionBank provides a useful new resource in parser-based QA research.
Computational Linguistics | 2008
Aoife Cahill; Michael Burke; Ruth O'Donovan; Stefan Riezler; Josef van Genabith; Andy Way
A number of researchers have recently conducted experiments comparing deep hand-crafted wide-coverage with shallow treebank- and machine-learning-based parsers at the level of dependencies, using simple and automatic methods to convert tree output generated by the shallow parsers into dependencies. In this article, we revisit such experiments, this time using sophisticated automatic LFG f-structure annotation methodologies with surprising results. We compare various PCFG and history-based parsers to find a baseline parsing system that fits best into our automatic dependency structure annotation technique. This combined system of syntactic parser and dependency structure annotation is compared to two hand-crafted, deep constraint-based parsers, RASP and XLE. We evaluate using dependency-based gold standards and use the Approximate Randomization Test to test the statistical significance of the results. Our experiments show that machine-learning-based shallow grammars augmented with sophisticated automatic dependency annotation technology outperform hand-crafted, deep, wide-coverage constraint grammars. Currently our best system achieves an f-score of 82.73% against the PARC 700 Dependency Bank, a statistically significant improvement of 2.18% over the most recent results of 80.55% for the hand-crafted LFG grammar and XLE parsing system and an f-score of 80.23% against the CBS 500 Dependency Bank, a statistically significant 3.66% improvement over the 76.57% achieved by the hand-crafted RASP grammar and parsing system.
workshop on statistical machine translation | 2007
Karolina Owczarzak; Josef van Genabith; Andy Way
We present a method for evaluating the quality of Machine Translation (MT) output, using labelled dependencies produced by a Lexical-Functional Grammar (LFG) parser. Our dependency-based method, in contrast to most popular string-based evaluation metrics, does not unfairly penalize perfectly valid syntactic variations in the translation, and the addition of WordNet provides a way to accommodate lexical variation. In comparison with other metrics on 16,800 sentences of Chinese-English newswire text, our method reaches high correlation with human scores.
meeting of the association for computational linguistics | 2006
Aoife Cahill; Josef van Genabith
We present a novel PCFG-based architecture for robust probabilistic generation based on wide-coverage LFG approximations (Cahill et al., 2004) automatically extracted from treebanks, maximising the probability of a tree given an f-structure. We evaluate our approach using string-based evaluation. We currently achieve coverage of 95.26%, a BLEU score of 0.7227 and string accuracy of 0.7476 on the Penn-II WSJ Section 23 sentences of length ≤20.
workshop on statistical machine translation | 2006
Karolina Owczarzak; Declan Groves; Josef van Genabith; Andy Way
In this paper we present a novel method for deriving paraphrases during automatic MT evaluation using only the source and reference texts, which are necessary for the evaluation, and word and phrase alignment software. Using target language paraphrases produced through word and phrase alignment a number of alternative reference sentences are constructed automatically for each candidate translation. The method produces lexical and low-level syntactic paraphrases that are relevant to the domain in hand, does not use external knowledge resources, and can be combined with a variety of automatic MT evaluation system.
Computational Linguistics | 2005
Ruth O'Donovan; Michael Burke; Aoife Cahill; Josef van Genabith; Andy Way
We present a methodology for extracting subcategorization frames based on an automatic lexical-functional grammar (LFG) f-structure annotation algorithm for the Penn-II and Penn-III Treebanks. We extract syntactic-function-based subcategorization frames (LFG semantic forms) and traditional CFG category-based subcategorization frames as well as mixed function/category-based frames, with or without preposition information for obliques and particle information for particle verbs. Our approach associates probabilities with frames conditional on the lemma, distinguishes between active and passive frames, and fully reflects the effects of long-distance dependencies in the source data structures. In contrast to many other approaches, ours does not predefine the subcategorization frame types extracted, learning them instead from the source data. Including particles and prepositions, we extract 21,005 lemma frame types for 4,362 verb lemmas, with a total of 577 frame types and an average of 4.8 frame types per verb. We present a large-scale evaluation of the complete set of forms extracted against the full COMLEX resource. To our knowledge, this is the largest and most complete evaluation of subcategorization frames acquired automatically for English.
Machine Translation | 2007
Karolina Owczarzak; Josef van Genabith; Andy Way
In this paper we show how labelled dependencies produced by a Lexical-Functional Grammar parser can be used in Machine Translation evaluation. In contrast to most popular evaluation metrics based on surface string comparison, our dependency-based method does not unfairly penalize perfectly valid syntactic variations in the translation, shows less bias towards statistical models, and the addition of WordNet provides a way to accommodate lexical differences. In comparison with other metrics on a Chinese–English newswire text, our method obtains high correlation with human scores, both on a segment and system level.
meeting of the association for computational linguistics | 2004
Ruth O'Donovan; Michael Burke; Aoife Cahill; Josef van Genabith; Andy Way
In this paper we present a methodology for extracting subcategorisation frames based on an automatic LFG f-structure annotation algorithm for the Penn-II Treebank. We extract abstract syntactic function-based subcategorisation frames (LFG semantic forms), traditional CFG category-based subcategorisation frames as well as mixed function/category-based frames, with or without preposition information for obliques and particle information for particle verbs. Our approach does not predefine frames, associates probabilities with frames conditional on the lemma, distinguishes between active and passive frames, and fully reflects the effects of long-distance dependencies in the source data structures. We extract 3586 verb lemmas, 14348 semantic form types (an average of 4 per lemma) with 577 frame types. We present a large-scale evaluation of the complete set of forms extracted against the full COMLEX resource.
international conference on computational linguistics | 2008
Yuqing Guo; Josef van Genabith; Haifeng Wang
We present dependency-based n-gram models for general-purpose, wide-coverage, probabilistic sentence realisation. Our method linearises unordered dependencies in input representations directly rather than via the application of grammar rules, as in traditional chart-based generators. The method is simple, efficient, and achieves competitive accuracy and complete coverage on standard English (Penn-II, 0.7440 BLEU, 0.05 sec/sent) and Chinese (CTB6, 0.7123 BLEU, 0.14 sec/sent) test data.