Josef Večeřa
Masaryk University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Josef Večeřa.
Review of Scientific Instruments | 2016
Katarzyna Anna Radaszkiewicz; Dominika Sýkorová; Pavel Karas; Jana Kudová; Lukáš Kohút; Lucia Binó; Josef Večeřa; Jan Víteček; Lukáš Kubala; Jiří Pacherník
The analysis of digital video output enables the non-invasive screening of various active biological processes. For the monitoring and computing of the beating parameters of cardiomyocytes in vitro, CB Analyser (cardiomyocyte beating analyser) software was developed. This software is based on image analysis of the video recording of beating cardiomyocytes. CB Analyser was tested using cardiomyocytes derived from mouse embryonic stem cells at different stages of cardiomyogenesis. We observed that during differentiation (from day 18), the beat peak width decreased, which corresponded to the increased speed of an individual pulse. However, the beating frequency did not change. Further, the effects of epinephrine modulating mature cardiomyocyte functions were tested to validate the CB Analyser analysis. In conclusion, data show that CB Analyser is a useful tool for evaluating the functions of both developing and mature cardiomyocytes under various conditions in vitro.
Oxidative Medicine and Cellular Longevity | 2016
Jan Kučera; Lucia Binó; Kateřina Štefková; Josef Jaroš; Ondřej Vašíček; Josef Večeřa; Lukáš Kubala; Jiří Pacherník
Reactive oxygen species (ROS) are important regulators of cellular functions. In embryonic stem cells, ROS are suggested to influence differentiation status. Regulated ROS formation is catalyzed primarily by NADPH-dependent oxidases (NOXs). Apocynin and diphenyleneiodonium are frequently used inhibitors of NOXs; however, both exhibit uncharacterized effects not related to NOXs inhibition. Interestingly, in our model of mouse embryonic stem cells we demonstrate low expression of NOXs. Therefore we aimed to clarify potential side effects of these drugs. Both apocynin and diphenyleneiodonium impaired proliferation of cells. Surprisingly, we observed prooxidant activity of these drugs determined by hydroethidine. Further, we revealed that apocynin inhibits PI3K/Akt pathway with its downstream transcriptional factor Nanog. Opposite to this, apocynin augmented activity of canonical Wnt signaling. On the contrary, diphenyleneiodonium activated both PI3K/Akt and Erk signaling pathways without affecting Wnt. Our data indicates limits and possible unexpected interactions of NOXs inhibitors with intracellular signaling pathways.
Histochemistry and Cell Biology | 2016
Eva Bártová; Josef Večeřa; Jana Krejčí; Soňa Legartová; Jiří Pacherník; Stanislav Kozubek
We studied the histone signature of embryonic and adult brains to strengthen existing evidence of the importance of the histone code in mouse brain development. We analyzed the levels and distribution patterns of H3K9me1, H3K9me2, H3K9me3, and HP1β in both embryonic and adult brains. Western blotting showed that during mouse brain development, the levels of H3K9me1, H3K9me2, and HP1β exhibited almost identical trends, with the highest protein levels occurring at E15 stage. These trends differed from the relatively stable level of H3K9me3 at developmental stages E8, E13, E15, and E18. Compared with embryonic brains, adult brains were characterized by very low levels of H3K9me1/me2/me3 and HP1β. Manipulation of the embryonic epigenome through histone deacetylase inhibitor treatment did not affect the distribution patterns of the studied histone markers in embryonic ventricular ependyma. Similarly, Hdac3 depletion in adult animals had no effect on histone methylation in the adult hippocampus. Our results indicate that the distribution of HP1β in the embryonic mouse brain is related to that of H3K9me1/me2 but not to that of H3K9me3. The unique status of H3K9me3 in the brain was confirmed by its pronounced accumulation in the granular layer of the adult olfactory bulb. Moreover, among the studied proteins, H3K9me3 was the only posttranslational histone modification that was highly abundant at clusters of centromeric heterochromatin, called chromocenters. When we focused on the hippocampus, we found this region to be rich in H3K9me1 and H3K9me3, whereas H3K9me2 and HP1β were present at a very low level or even absent in the hippocampal blade. Taken together, these results revealed differences in the epigenome of the embryonic and adult mouse brain and showed that the adult hippocampus, the granular layer of the adult olfactory bulb, and the ventricular ependyma of the embryonic brain are colonized by specific epigenetic marks.
Journal of Cellular Physiology | 2018
Josef Večeřa; Eva Bártová; Jana Krejčí; Soňa Legartová; Denisa Komůrková; Jana Ruda-Kucerova; Tibor Štark; Eva Dražanová; Tomáš Kašpárek; Alexandra Šulcová; Frank J. Dekker; Wiktor Szymanski; Christian Seiser; Georg Weitzer; Raphael Mechoulam; Vincenzo Micale; Stanislav Kozubek
Although histone acetylation is one of the most widely studied epigenetic modifications, there is still a lack of information regarding how the acetylome is regulated during brain development and pathophysiological processes. We demonstrate that the embryonic brain (E15) is characterized by an increase in H3K9 acetylation as well as decreases in the levels of HDAC1 and HDAC3. Moreover, experimental induction of H3K9 hyperacetylation led to the overexpression of NCAM in the embryonic cortex and depletion of Sox2 in the subventricular ependyma, which mimicked the differentiation processes. Inducing differentiation in HDAC1‐deficient mouse ESCs resulted in early H3K9 deacetylation, Sox2 downregulation, and enhanced astrogliogenesis, whereas neuro‐differentiation was almost suppressed. Neuro‐differentiation of (wt) ESCs was characterized by H3K9 hyperacetylation that was associated with HDAC1 and HDAC3 depletion. Conversely, the hippocampi of schizophrenia‐like animals showed H3K9 deacetylation that was regulated by an increase in both HDAC1 and HDAC3. The hippocampi of schizophrenia‐like brains that were treated with the cannabinoid receptor‐1 inverse antagonist AM251 expressed H3K9ac at the level observed in normal brains. Together, the results indicate that co‐regulation of H3K9ac by HDAC1 and HDAC3 is important to both embryonic brain development and neuro‐differentiation as well as the pathophysiology of a schizophrenia‐like phenotype.
Microscopy and Microanalysis | 2016
Michal Franek; Jana Suchánková; Petra Sehnalová; Jana Krejčí; Soňa Legartová; Stanislav Kozubek; Josef Večeřa; Dmitry Sorokin; Eva Bártová
Studies on fixed samples or genome-wide analyses of nuclear processes are useful for generating snapshots of a cell population at a particular time point. However, these experimental approaches do not provide information at the single-cell level. Genome-wide studies cannot assess variability between individual cells that are cultured in vitro or originate from different pathological stages. Immunohistochemistry and immunofluorescence are fundamental experimental approaches in clinical laboratories and are also widely used in basic research. However, the fixation procedure may generate artifacts and prevents monitoring of the dynamics of nuclear processes. Therefore, live-cell imaging is critical for studying the kinetics of basic nuclear events, such as DNA replication, transcription, splicing, and DNA repair. This review is focused on the advanced microscopy analyses of the cells, with a particular focus on live cells. We note some methodological innovations and new options for microscope systems that can also be used to study tissue sections. Cornerstone methods for the biophysical research of living cells, such as fluorescence recovery after photobleaching and fluorescence resonance energy transfer, are also discussed, as are studies on the effects of radiation at the individual cellular level.
Stem Cells International | 2017
Josef Večeřa; Jana Kudová; Jan Kučera; Lukáš Kubala; Jiří Pacherník
Extensive research in the field of stem cells and developmental biology has revealed evidence of the role of hypoxia as an important factor regulating self-renewal and differentiation. However, comprehensive information about the exact hypoxia-mediated regulatory mechanism of stem cell fate during early embryonic development is still missing. Using a model of embryoid bodies (EBs) derived from murine embryonic stem cells (ESC), we here tried to encrypt the role of hypoxia-inducible factor 1α (HIF1α) in neural fate during spontaneous differentiation. EBs derived from ESC with the ablated gene for HIF1α had abnormally increased neuronal characteristics during differentiation. An increased neural phenotype in Hif1α−/− EBs was accompanied by the disruption of β-catenin signaling together with the increased cytoplasmic degradation of β-catenin. The knock-in of Hif1α, as well as β-catenin ectopic overexpression in Hif1α−/− EBs, induced a reduction in neural markers to the levels observed in wild-type EBs. Interestingly, direct interaction between HIF1α and β-catenin was demonstrated by immunoprecipitation analysis of the nuclear fraction of wild-type EBs. Together, these results emphasize the regulatory role of HIF1α in β-catenin stabilization during spontaneous differentiation, which seems to be a crucial mechanism for the natural inhibition of premature neural differentiation.
Archive | 2013
Martina Kohutková Lánová; Josef Večeřa; Jan Kučera; Jiřina Medalová; Jiří Pacherník
Archive | 2013
Josef Večeřa; Veronika Pánská; Lukáš Kubala; Jiří Pacherník
Archive | 2013
Josef Večeřa; Veronika Pánská; Lukáš Kubala; Jiří Pacherník
Archive | 2013
Martina Kohutková Lánová; Josef Večeřa; Jan Kučera; Jiřina Medalová; Jiří Pacherník