Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Josef Zehnálek is active.

Publication


Featured researches published by Josef Zehnálek.


Molecules | 2010

Fully automated spectrometric protocols for determination of antioxidant activity: advantages and disadvantages.

Jiri Sochor; Marketa Ryvolova; Olga Krystofova; Petr Salaš; Vojtech Adam; Libuše Trnková; Ladislav Havel; Miroslava Beklova; Josef Zehnálek; Ivo Provaznik; Rene Kizek

The aim of this study was to describe behaviour, kinetics, time courses and limitations of the six different fully automated spectrometric methods - DPPH, TEAC, FRAP, DMPD, Free Radicals and Blue CrO5. Absorption curves were measured and absorbance maxima were found. All methods were calibrated using the standard compounds Trolox® and/or gallic acid. Calibration curves were determined (relative standard deviation was within the range from 1.5 to 2.5 %). The obtained characteristics were compared and discussed. Moreover, the data obtained were applied to optimize and to automate all mentioned protocols. Automatic analyzer allowed us to analyse simultaneously larger set of samples, to decrease the measurement time, to eliminate the errors and to provide data of higher quality in comparison to manual analysis. The total time of analysis for one sample was decreased to 10 min for all six methods. In contrary, the total time of manual spectrometric determination was approximately 120 min. The obtained data provided good correlations between studied methods (R = 0.97 – 0.99).


Sensors | 2008

Determination of Vitamin C (Ascorbic Acid) Using High Performance Liquid Chromatography Coupled with Electrochemical Detection

Zbynek Gazdik; Ondrej Zitka; Jitka Petrlová; Vojtech Adam; Josef Zehnálek; Aleš Horna; Vojtech Reznicek; Miroslava Beklova; Rene Kizek

Vitamin C (ascorbic acid, ascorbate, AA) is a water soluble organic compound that participates in many biological processes. The main aim of this paper was to utilize two electrochemical detectors (amperometric – Coulouchem III and coulometric – CoulArray) coupled with flow injection analysis for the detection of ascorbic acid. Primarily, we optimized the experimental conditions. The optimized conditions were as follows: detector potential 100 mV, temperature 25 °C, mobile phase 0.09% TFA:ACN, 3:97 (v/v) and flow rate 0.13 mL·min-1. The tangents of the calibration curves were 0.3788 for the coulometric method and 0.0136 for the amperometric one. The tangent of the calibration curve measured by the coulometric detector was almost 30 times higher than the tangent measured by the amperometric detector. Consequently, we coupled a CoulArray electrochemical detector with high performance liquid chromatography and estimated the detection limit for AA as 90 nM (450 fmol per 5 μL injection). The method was used for the determination of vitamin C in a pharmaceutical preparations (98 ± 2 mg per tablet), in oranges (Citrus aurantium) (varied from 30 to 56 mg/100 g fresh weight), in apples (Malus sp.) (varied from 11 to 19 mg/100 g fresh weight), and in human blood serum (varied from 38 to 78 μM). The recoveries were also determined.


Sensors | 2010

Electrochemical Microsensors for the Detection of Cadmium(II) and Lead(II) Ions in Plants

Olga Krystofova; Libuše Trnková; Vojtech Adam; Josef Zehnálek; Petr Babula; Rene Kizek

Routine determination of trace metals in complex media is still a difficult task for many analytical instruments. The aim of this work was to compare three electro-chemical instruments [a standard potentiostat (Autolab), a commercially available miniaturized potentiostat (PalmSens) and a homemade micropotentiostat] for easy-to-use and sensitive determination of cadmium(II) and lead(II) ions. The lowest detection limits (hundreds of pM) for both metals was achieved by using of the standard potentiostat, followed by the miniaturized potentiostat (tens of nM) and the homemade instrument (hundreds of nM). Nevertheless, all potentiostats were sensitive enough to evaluate contamination of the environment, because the environmental limits for both metals are higher than detection limits of the instruments. Further, we tested all used potentiostats and working electrodes on analysis of environmental samples (rainwater, flour and plant extract) with artificially added cadmium(II) and lead(II). Based on the similar results obtained for all potentiostats we choose a homemade instrument with a carbon tip working electrode for our subsequent environmental experiments, in which we analyzed maize and sunflower seedlings and rainwater obtained from various sites in the Czech Republic.


Sensors | 2009

Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions

Olga Krystofova; Violetta Shestivska; Michaela Vašinová Galiová; Karel Novotny; Jozef Kaiser; Josef Zehnálek; Petr Babula; Radka Opatrilova; Vojtech Adam; Rene Kizek

In this study, the influence of lead (II) ions on sunflower growth and biochemistry was investigated from various points of view. Sunflower plants were treated with 0, 10, 50, 100 and/or 500 μM Pb-EDTA for eight days. We observed alterations in growth in all experimental groups compared with non-treated control plants. Further we determined total content of proteins by a Bradford protein assay. By the eighth day of the experiment, total protein contents in all treated plants were much lower compared to control. Particularly noticeable was the loss of approx. 8 μg/mL or 15 μg/mL in shoots or roots of plants treated with 100 mM Pb-EDTA. We also focused our attention on the activity of alanine transaminase (ALT), aspartate transaminase (AST) and urease. Activity of the enzymes increased with increasing length of the treatment and applied concentration of lead (II) ions. This increase corresponds well with a higher metabolic activity of treated plants. Contents of cysteine, reduced glutathione (GSH), oxidized glutathione (GSSG) and phytochelatin 2 (PC2) were determined by high performance liquid chromatography with electrochemical detection. Cysteine content declined in roots of plants with the increasing time of treatment of plants with Pb-EDTA and the concentration of toxic substance. Moreover, we observed ten times higher content of cysteine in roots in comparison with shoots. The observed reduction of cysteine content probably relates with its utilization for biosynthesis of GSH and phytochelatins, because the content of GSH and PC2 was similar in roots and shoots and increased with increased treatment time and concentration of Pb-EDTA. Moreover, we observed oxidative stress caused by Pb-EDTA in roots where the GSSG/GSH ratio was about 0.66. In shoots, the oxidative stress was less distinctive, with a GSSG/GSH ratio 0.14. We also estimated the rate of phytochelatin biosynthesis from the slope of linear equations plotted with data measured in the particular experimental group. The highest rate was detected in roots treated with 100 μM of Pb-EDTA. To determine heavy metal ions many analytical instruments can be used, however, most of them are only able to quantify total content of the metals. This problem can be overcome using laser induced breakdown spectroscopy, because it is able to provide a high spatial-distribution of metal ions in different types of materials, including plant tissues. Data obtained were used to assemble 3D maps of Pb and Mg distribution. Distribution of these elements is concentrated around main vascular bundle of leaf, which means around midrib.


Journal of Hazardous Materials | 2011

Phytochelatin synthase activity as a marker of metal pollution.

Ondrej Zitka; Olga Krystofova; Pavlina Sobrova; Vojtech Adam; Josef Zehnálek; Miroslava Beklová; Rene Kizek

The synthesis of phytochelatins is catalyzed by γ-Glu-Cys dipeptidyl transpeptidase called phytochelatin synthase (PCS). Aim of this study was to suggest a new tool for determination of phytochelatin synthase activity in the tobacco BY-2 cells treated with different concentrations of the Cd(II). After the optimization steps, an experiment on BY-2 cells exposed to different concentrations of Cd(NO(3))(2) for 3 days was performed. At the end of the experiment, cells were harvested and homogenized. Reduced glutathione and cadmium (II) ions were added to the cell suspension supernatant. These mixtures were incubated at 35°C for 30min and analysed using high performance liquid chromatography coupled with electrochemical detector (HPLC-ED). The results revealed that PCS activity rises markedly with increasing concentration of cadmium (II) ions. The lowest concentration of the toxic metal ions caused almost three fold increase in PCS activity as compared to control samples. The activity of PCS (270fkat) in treated cells was more than seven times higher in comparison to control ones. K(m) for PCS was estimated as 2.3mM.


Bioelectrochemistry | 2008

Affecting of aquatic vascular plant Lemna minor by cisplatin revealed by voltammetry.

V. Šupálková; Miroslava Beklova; Jiri Baloun; Christoph Singer; Bernd Sures; Vojtech Adam; Dalibor Huska; Jiri Pikula; Libuse Rauscherova; Ladislav Havel; Josef Zehnálek; Rene Kizek

Within the context of application of platinum derivates based effective cytostatics, we can suppose that these risk metals can get into aquatic ecosystems where they can show biologic availability for food chain. In the present work we report on investigation of affecting of duckweed (Lemna minor) by various doses of cisplatin (0, 5, 10, 20, 40, 80 and 160 microM) for 4 days. The toxic influence of cisplatin was evaluated on the basis of growth inhibition expressed as number of leaves, growth rate, and total amount of biomass. The result value of 96hEC50, calculated from growth inhibition with comparison of growth rates, was 6.93 microM. Moreover we aimed on determination of cisplatin content using differential pulse voltammetry. The highest content of cisplatin (320 ng g(-1) of fresh weight) was determined in plants treated by 80 microM at the second day of treatment. Plants protect themselves against heavy metals by means of synthesis of cysteine-rich peptides such as glutathione and phytochelatins. Thus thiol determination in the treated plants by means of Brdicka reaction followed. The marked increase in thiol concentration detected is associated with defence reaction of the plant against stress caused by cisplatin.


Central European Journal of Chemistry | 2012

The effects on soil/water/plant/animal systems by platinum group elements

Pavlina Sobrova; Josef Zehnálek; Vojtech Adam; Miroslava Beklova; Rene Kizek

AbstractEmissions of toxic substances such as oxides of carbon, nitrogen, sulphur, and, in addition, aromatic hydrocarbons, aldehydes and heavy metals are the most serious problem of road traffic affecting landscape. Platinum group elements (PGE), which are the main component of the catalyst, are one of the main sources of heavy metals in the environment. Here, we review the way by which emissions and forms of the emitted PGE end up in the environment especially to the soil-water-plant-animal system. The major points discussed are the following: 1) the main sources of PGE emission are automobile exhaust catalysts; 2) hospitals, where platinum is widely used to treat malignant neoplasm, and urban waste water belonging to other important sources of PGE in the environment; 3) soil is one of the most important components of the environment that may be contaminated with platinum metals; 4) phytotoxicity of PGE depends on the following conditions: the concentration of metals in the soil, time of exposure, the chemical form of metal, the chemical composition of exposed soil and plant species; 5) animals are also endangered by the increasing concentration of PGE in the environment. Moreover, we pay our attention to thiol-based mechanisms of how an organism protects itself against platinum group elements.


Molecules | 2011

Comparison of various easy-to-use procedures for extraction of phenols from apricot fruits.

Ondrej Zitka; Jiri Sochor; Otakar Rop; Sylvie Skalickova; Pavlina Sobrova; Josef Zehnálek; Miroslava Beklova; Boris Krska; Vojtech Adam; Rene Kizek

Phenols are broadly distributed in the plant kingdom and are the most abundant secondary metabolites of plants. Plant polyphenols have drawn increasing attention due to their potential antioxidant properties and their marked effects in the prevention of various oxidative stress associated diseases such as cancer. The objective of this study was to investigate a suitable method for determination of protocatechuic acid, 4-aminobenzoic acid, chlorogenic acid, caffeic acid, vanillin, p-coumaric acid, rutin, ferulic acid, quercetin, resveratrol and quercitrin from apricot samples. A high-performance liquid chromatograph with electrochemical and UV detectors was used. The method was optimized in respect to both the separation selectivity of individual phenolic compounds and the maximum sensitivity with the electrochemical detection. The lowest limits of detection (3 S/N) using UV detection were estimated for ferulic acid (3 µM), quercitrin (4 µM) and quercetin (4 µM). Using electrochemical detection values of 27 nM, 40 nM and 37 nM were achieved for ferulic acid, quercitrin and quercetin, respectively. It follows from the acquired results that the coulometric detection under a universal potential of 600 mV is more suitable and sensitive for polyphenols determination than UV detection at a universal wavelength of 260 nm. Subsequently, we tested the influence of solvent composition, vortexing and sonication on separation efficiency. Our results showed that a combination of water, acetone and methanol in 20:20:60 ratio was the most effective for p-aminobenzoic acid, chlorgenic acid, caffeic acid, protocatechuic acid, ferulic acid, rutin, resveratrol and quercetin, in comparison with other solvents. On the other hand, vortexing at 4 °C produced the highest yield. Moreover, we tested the contents of individual polyphenols in the apricot cultivars Mamaria, Mold and LE-1075. The major phenolic compounds were chlorgenic acid and rutin. Chlorgenic acid was found in amounts of 2,302 mg/100 g in cultivar LE-1075, 546 mg/100 g in cultivar Mamaria and 129 mg/100 g in cultivar Mold. Generally, the cultivar LE-1075 produced the highest polyphenol content values, contrary to Mold, which compared to cultivar LE-1075 was quite poor from the point of view of the phenolics content.


International Journal of Environmental Research and Public Health | 2010

Effects of Various Doses of Selenite on Stinging Nettle (Urtica dioica L.)

Olga Krystofova; Vojtech Adam; Petr Babula; Josef Zehnálek; Miroslava Beklova; Ladislav Havel; Rene Kizek

The aim of this study was to investigate the effects of selenium (Se) on the growth, accumulation and possible mechanisms of Se transport in certain parts (roots, leaves, stamp and apex) of nettle (Urtica dioica L.) plants. Se was supplemented by one-shot and two repeated doses to the soil (2.0 and 4.0 mg Se per kg of substrate). Selenium content in roots increased linearly with dose and was significantly higher compared to other plant parts of interest. However, growth of the above-ground parts of plant as well as roots was slightly inhibited with increasing selenium concentration in comparison to the untreated plants. The content of phytochelatin2, a low molecular mass peptide containing a sulfhydryl group, correlated well with the Se content. This suggests a possible stimulation of synthesis of this plant peptide by Se.


Archive | 2013

Metal Transporters in Plants

Ondrej Zitka; Olga Krystofova; David Hynek; Pavlina Sobrova; Jozef Kaiser; Jiri Sochor; Josef Zehnálek; Petr Babula; Nuria Ferrol; Rene Kizek; Vojtech Adam

Several transition metals are essential for plants as for most other organisms. These elements have been needed in the course of evolution because of their chemical properties such as redox activity under physiological conditions (Cu, Fe) or Lewis acid strength (Zn). The properties that make transition metal ions indispensable for life, however, are also the reason why they can easily be toxic when present in excess. The main threat lies in their ability to produce reactive oxygen species (ROS). Unfortunately, toxic metals such as cadmium, lead, mercury, etc., as well as the essential ones can also produce ROS. In the course of industrialization, emissions of metals have risen tremendously and significantly exceed those from natural sources for practically all metals. Due to this mobilization of metals into the biosphere, their circulation through soil, water, and air has greatly increased. The main aim of this chapter is to discuss the effects of metal ions on a plant cell, to summarize the current state of the art in the field of thiol-rich compounds like phytochelatins to detoxify metal ions.

Collaboration


Dive into the Josef Zehnálek's collaboration.

Top Co-Authors

Avatar

Rene Kizek

University of Veterinary and Pharmaceutical Sciences Brno

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jitka Petrlová

University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

David Potěšil

Central European Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge