Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Josefa León is active.

Publication


Featured researches published by Josefa León.


Journal of Pineal Research | 2005

Melatonin mitigates mitochondrial malfunction

Josefa León; Darío Acuña-Castroviejo; Germane Escames; Dyn Xian Tan; Russel J. Reiter

Abstract:  Melatonin, or N‐acetyl‐5‐methoxytryptamine, is a compound derived from tryptophan that is found in all organisms from unicells to vertebrates. This indoleamine may act as a protective agent in disease conditions such as Parkinsons, Alzheimers, aging, sepsis and other disorders including ischemia/reperfusion. In addition, melatonin has been proposed as a drug for the treatment of cancer. These disorders have in common a dysfunction of the apoptotic program. Thus, while defects which reduce apoptotic processes can exaggerate cancer, neurodegenerative disorders and ischemic conditions are made worse by enhanced apoptosis. The mechanism by which melatonin controls cell death is not entirely known. Recently, mitochondria, which are implicated in the intrinsic pathway of apoptosis, have been identified as a target for melatonin actions. It is known that melatonin scavenges oxygen and nitrogen‐based reactants generated in mitochondria. This limits the loss of the intramitochondrial glutathione and lowers mitochondrial protein damage, improving electron transport chain (ETC) activity and reducing mtDNA damage. Melatonin also increases the activity of the complex I and complex IV of the ETC, thereby improving mitochondrial respiration and increasing ATP synthesis under normal and stressful conditions. These effects reflect the ability of melatonin to reduce the harmful reduction in the mitochondrial membrane potential that may trigger mitochondrial transition pore (MTP) opening and the apoptotic cascade. In addition, a reported direct action of melatonin in the control of currents through the MTP opens a new perspective in the understanding of the regulation of apoptotic cell death by the indoleamine.


Journal of Pineal Research | 2001

Melatonin, mitochondria, and cellular bioenergetics

Darío Acuña-Castroviejo; Miguel Martín; M. Macías; Germaine Escames; Josefa León; Huda Khaldy; Russel J. Reiter

Aerobic cells use oxygen for the production of 90–95% of the total amount of ATP that they use. This amounts to about 40 kg ATP/day in an adult human. The synthesis of ATP via the mitochondrial respiratory chain is the result of electron transport across the electron transport chain coupled to oxidative phosphorylation. Although ideally all the oxygen should be reduced to water by a four‐electron reduction reaction driven by the cytochrome oxidase, under normal conditions a small percentage of oxygen may be reduced by one, two, or three electrons only, yielding superoxide anion, hydrogen peroxide, and the hydroxyl radical, respectively. The main radical produced by mitochondria is superoxide anion and the intramitochondrial antioxidant systems should scavenge this radical to avoid oxidative damage, which leads to impaired ATP production. During aging and some neurodegenerative diseases, oxidatively damaged mitochondria are unable to maintain the energy demands of the cell leading to an increased production of free radicals. Both processes, i.e., defective ATP production and increased oxygen radicals, may induce mitochondrial‐dependent apoptotic cell death. Melatonin has been reported to exert neuroprotective effects in several experimental and clinical situations involving neurotoxicity and/or excitotoxicity. Additionally, in a series of pathologies in which high production of free radicals is the primary cause of the disease, melatonin is also protective. A common feature in these diseases is the existence of mitochondrial damage due to oxidative stress. The discoveries of new actions of melatonin in mitochondria support a novel mechanism, which explains some of the protective effects of the indoleamine on cell survival.


The FASEB Journal | 2000

Melatonin but not vitamins C and E maintains glutathione homeostasis in t-butyl hydroperoxide-induced mitochondrial oxidative stress

Miguel Martín; M. Macías; Germaine Escames; Josefa León; Darío Acuña-Castroviejo

Mitochondria do not contain catalase and are therefore largely dependent on reduced glutathione (GSH) and glutathione peroxidases for its antioxidant protection. When GSH levels are greatly decreased, hydrogen peroxide accumulates leading to extensive mitochondrial damage. Melatonin has antioxidant properties and prevents toxic effects of reactive oxygen species by maintaining cellular GSH homeostasis. Thus, we examined the influence of melatonin and other classical antioxidants such as vitamins C and E on GSH content and the activity of the GSH‐related enzymes (glutathione peroxidase and reductase) in isolated rat liver and brain mitochondria treated with t‐butyl hydroperoxide (i‐BHP). In control mitochondria melatonin (100 nM) significantly increases GSH content and glutathione peroxidase and reductase activities. After incubation with 100 μM i‐BHP, the mitochondrial hydroperoxides level increased, 90% of mitochondrial GSH was oxidized to GSSH, and the activities of GSH‐related enzymes were almost totally inhibited. Melatonin (100 nM) counteracted the changes in GSH, GSH‐related enzymes and hydroperoxides induced by i‐BHP in cultured mitochondria. In the presence of 100 nM melatonin, the activity of the respiratory chain complexes I and IV, measured in submitochondrial particles prepared from rat liver and brain mitochondria, increased significantly. Vitamin C was virtually without effect, and only 1 mM vitamin E increased GSH and reduced hydroperoxide mitochondrial contents. Our results suggest that melatonin, but not vitamins C and E, prevents the toxic effects of hydroperoxides on mitochondria by regenerating their GSH content.


Journal of Neuroimmunology | 2005

Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages

Juan C. Mayo; Rosa M. Sainz; Dun Xian Tan; Rüdiger Hardeland; Josefa León; Carmen Rodríguez; Russel J. Reiter

Inflammation is a complex phenomenon involving multiple cellular and molecular interactions which must be tightly regulated. Cyclooxygenase-2 (COX) is the key enzyme that catalyzes the two sequential steps in the biosynthesis of PGs from arachidonic acid. The inducible isoform of COX, namely COX-2, plays a critical role in the inflammatory response and its over-expression has been associated with several pathologies including neurodegenerative diseases and cancer. Melatonin is the main product of the pineal gland with well documented antioxidant and immuno-modulatory effects. Since the action of the indole on COX-2 has not been previously described, the goal of the present report was to test the effect of melatonin on the activities of COX-2 and inducible nitric oxide synthase (iNOS), using lipopolysaccharide (LPS)-activated RAW 264.7 macrophages as a model. Melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), prevented COX-2 activation induced by LPS, without affecting COX-1 protein levels. The structurally related compound 6-methoxy-melatonin only partially prevented the increase in COX-2 protein levels induced by the toxin. Likewise melatonin prevented iNOS activation and reduced the concentration of products from both enzymes, PGE(2) and nitric oxide. Another endogenous antioxidant like N-acetyl-cysteine (NAC) did not reduced COX-2 significantly. The current finding corroborates a role of melatonin as an anti-inflammatory agent and, for the first time, COX-2 and iNOS as molecular targets for either melatonin or its metabolites AFMK and AMK. These anti-inflammatory actions seem not to be exclusively mediated by the free radical scavenging properties of melatonin. As a consequence, the present work suggests these substances as a new class of potential anti-inflammatory agents without the classical side effects due to COX-1 inhibition.


The International Journal of Biochemistry & Cell Biology | 2002

Melatonin increases the activity of the oxidative phosphorylation enzymes and the production of ATP in rat brain and liver mitochondria

Miguel Martín; M. Macías; Josefa León; Germaine Escames; Houda Khaldy; Darı́os Acuña-Castroviejo

We recently showed that melatonin counteracted mitochondrial oxidative stress and increased the activity of the mitochondrial oxidative phosphorylation (OXPHOS) enzymes both in vivo and in vitro. To further clarify these effects, we studied here the activity of OXPHOS enzymes and the synthesis of ATP in rat liver and brain mitochondria in vitro. In sub-mitochondrial particles, melatonin increases the activity of the complexes I and IV dose-dependently, the effect being significant between 1 and 10nM. Blue native-PAGE followed by histochemical analysis of the OXPHOS enzymes further showed the melatonin-induced increase of complex I activity. Titration studies show that melatonin counteracts the partial inhibition of complex IV induced by 5 microM potassium cyanide. However, melatonin (up to 5mM) was unable to recover the activity of complex IV when it was completely blocked by 100 microM cyanide. These data suggest that the indoleamine could stimulate the activity of the non-inhibited part of the complex IV. Melatonin also increases the production of ATP in control mitochondria and counteracts the cyanide-induced inhibition of ATP synthesis. These results provide new hormonal mechanism regulating mitochondrial homeostasis and may explain, at least in part, the anti-aging and neuroprotective properties of melatonin.


The FASEB Journal | 2003

Melatonin counteracts lipopolysaccharide-induced expression and activity of mitochondrial nitric oxide synthase in rats

Germaine Escames; Josefa León; M. Macías; Huda Khaldy; Darío Acuña-Castroviejo

Mitochondrial nitric oxide synthase (mtNOS) is expressed constitutively, although it might be induced. Nitric oxide (NO) is a physiological regulator of mitochondrial respiration. Melatonin prevents mitochondrial oxidative damage and inhibits iNOS expression induced by bacterial lipopolysaccharide (LPS). The loss of melatonin with age may be related to the age‐dependent mitochondrial damage. Thus, we examined the protective role of melatonin against the effects of LPS on mtNOS and on respiratory complexes activity in liver and lung mitochondria from young and old rats. The activity of mtNOS in control lung was low and did not change with age. LPS administration (10 mg/kg, i.v.) significantly increased mtNOS expression and activity and NO production in lung mitochondria, and the effect was greater in old rats. LPS administration also reduced the age‐dependent decrease of the respiratory complexes I and IV. Melatonin administration (60 mg/kg, i.p.) prevented the LPS toxicity, decreasing mitochondrial NOS activity and NO production. Melatonin also counteracted LPS‐induced inhibition of complexes I and IV. In general, the actions of melatonin were stronger in older animals than in younger ones. The results suggest that an inducible component of mtNOS, together with mitochondrial damage, occurs during sepsis, and melatonin prevents the mitochondrial failure that occurs during endotoxemia.


Experimental Biology and Medicine | 2005

When Melatonin Gets on Your Nerves: Its Beneficial Actions in Experimental Models of Stroke:

Russel J. Reiter; Dun Xian Tan; Josefa León; Ülkan Kilic; Ertugrul Kilic

This article summarizes the evidence that endogenously produced and exogenously administered melatonin reduces the degree of tissue damage and limits the biobehavioral deficits associated with experimental models of ischemia/reperfusion injury in the brain (i.e., stroke). Melatonins efficacy in curtailing neural damage under conditions of transitory interruption of the blood supply to the brain has been documented in models of both focal and global ischemia. In these studies many indices have been shown to be improved as a consequence of melatonin treatment. For example, when given at the time of ischemia or reperfusion onset, melatonin reduces neurophysio-logical deficits, infarct volume, the degree of neural edema, lipid peroxidation, protein carbonyls, DNA damage, neuron and glial loss, and death of the animals. Melatonins protective actions against these adverse changes are believed to stem from its direct free radical scavenging and indirect antioxidant activities, possibly from its ability to limit free radical generation at the mitochondrial level and because of yet-undefined functions. Considering its high efficacy in overcoming much of the damage associated with ischemia/reperfusion injury, not only in the brain but in other organs as well, its use in clinical trials for the purpose of improving stroke outcome should be seriously considered.


Journal of Neurochemistry | 2006

Inhibition of neuronal nitric oxide synthase activity by N1-acetyl-5-methoxykynuramine, a brain metabolite of melatonin.

Josefa León; Germaine Escames; María Isabel Rodríguez; Luis C. López; Víctor Tapias; Antonio Entrena; Encarnación Camacho; María D. Carrión; Miguel A. Gallo; Antonio Espinosa; Dun Xian Tan; Russel J. Reiter; Darío Acuña-Castroviejo

We assessed the effects of melatonin, N1‐acetyl‐N 2‐formyl‐5‐methoxykynuramine (AFMK) and N1‐acetyl‐5‐methoxykynuramine (AMK) on neuronal nitric oxide synthase (nNOS) activity in vitro and in rat striatum in vivo. Melatonin and AMK (10−11−10−3 m), but not AFMK, inhibited nNOS activity in vitro in a dose–response manner. The IC50 value for AMK (70 µm) was significantly lower than for melatonin (>1 mm). A 20% nNOS inhibition was reached with either 10−9 m melatonin or 10−11 m AMK. AMK inhibits nNOS by a non‐competitive mechanism through its binding to Ca2+‐calmodulin (CaCaM). The inhibition of nNOS elicited by melatonin, but not by AMK, was blocked with 0.05 mm norharmane, an indoleamine‐2,3‐dioxygenase inhibitor. In vivo, the potency of AMK to inhibit nNOS activity was higher than that of melatonin, as a 25% reduction in rat striatal nNOS activity was found after the administration of either 10 mg/kg of AMK or 20 mg/kg of melatonin. Also, in vivo, the administration of norharmane blocked the inhibition of nNOS produced by melatonin administration, but not the inhibition produced by AMK. These data reveal that AMK rather than melatonin is the active metabolite against nNOS, which may be inhibited by physiological levels of AMK in the rat striatum.


Advances in Experimental Medicine and Biology | 2003

Mitochondrial regulation by melatonin And its metabolites

Darío Acuña-Castroviejo; Germaine Escames; Josefa León; Ángel Carazo; Hoda Khaldy

Our results show that melatonin and N-acetyl-5-methoxykynurenamine (aMK) physiologically regulate both the electron transport chain (ETC) and OXPHOS, increasing the electron transport and ATP synthesis by normal mitochondria. Melatonin also counteracts mitochondrial oxidative damage induced by t-butyl hydroperoxide, recovering glutathione levels and ATP production. However, the effects of melatonin not only depend of its antioxidant properties, since the indoleamine specifically interacts with complex I and IV of the ETC increasing their activity. Experiments in vivo showed that melatonin administration prevents sepsis-induced ETC damage decreasing the activity and expression of INOS and mtNOS, thus reducing intramitochondrial nitric oxide (NO) and peroxynitrite (ONOO-) levels. Consequently, mitochondrial ETC ad ATP production recovered to normal conditions. The presence of specific binding of melatonin in mitochondrial matrix led us to explore the genomic role of the indoleamine in these organelles. In vivo and in vitro experiments showed that administration of melatonin increased mtONA transcriptional activity of the subunits 1-3 of the complex IV. These effects correlated well with the effects of melatonin on complex IV activity. The data suggest a new rate for melatonin to regulate mitochondrial homeostasis. Due to the relationships between mitochondrial damage, aging and neurodegenerative diseases, the effects of melatonin here described further support its antiaging and neuroprotective properties.


Journal of Pineal Research | 2006

Melatonin counteracts inducible mitochondrial nitric oxide synthase-dependent mitochondrial dysfunction in skeletal muscle of septic mice

Germaine Escames; Luis C. López; Víctor Tapias; Pilar Utrilla; Russel J. Reiter; Ana B. Hitos; Josefa León; María Isabel Rodríguez; Darío Acuña-Castroviejo

Abstract:  Mitochondrial nitric oxide synthase (mtNOS) produces nitric oxide (NO) to modulate mitochondrial respiration. Besides a constitutive mtNOS isoform it was recently suggested that mitochondria express an inducible isoform of the enzyme during sepsis. Thus, the mitochondrial respiratory inhibition and energy failure underlying skeletal muscle contractility failure observed in sepsis may reflect the high levels of NO produced by inducible mtNOS. The fact that mtNOS is induced during sepsis suggests its relation to inducible nitric oxide synthase (iNOS). Thus, we examined the changes in mtNOS activity and mitochondrial function in skeletal muscle of wild‐type (iNOS+/+) and iNOS knockout (iNOS−/−) mice after sepsis. We also studied the effects of melatonin administration on mitochondrial damage in this experimental paradigm. After sepsis, iNOS+/+ but no iNOS−/− mice showed an increase in mtNOS activity and NO production and a reduction in electron transport chain activity. These changes were accompanied by a pronounced oxidative stress reflected in changes in lipid peroxidation levels, oxidized glutathione/reduced glutathione ratio, and glutathione peroxidase and reductase activities. Melatonin treatment counteracted both the changes in mtNOS activity and rises in oxidative stress; the indole also restored mitochondrial respiratory chain in septic iNOS+/+ mice. Mitochondria from iNOS−/− mice were unaffected by either sepsis or melatonin treatment. The data suggest that inducible mtNOS, which is coded by the same gene as that for iNOS, is responsible for mitochondrial dysfunction during sepsis. The results also suggest the use of melatonin for the protection against mtNOS‐mediated mitochondrial failure.

Collaboration


Dive into the Josefa León's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Russel J. Reiter

University of Health Science

View shared research outputs
Top Co-Authors

Avatar

Javier Salmerón

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dun Xian Tan

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Gila

Instituto de Salud Carlos III

View shared research outputs
Researchain Logo
Decentralizing Knowledge