Josep A. Biosca
Autonomous University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Josep A. Biosca.
Biochemical Journal | 2002
Carol Larroy; M. Rosario Fernández; Eva González; Xavier Parés; Josep A. Biosca
YMR318C represents an open reading frame from Saccharomyces cerevisiae with unknown function. It possesses a conserved sequence motif, the zinc-containing alcohol dehydrogenase (ADH) signature, specific to the medium-chain zinc-containing ADHs. In the present study, the YMR318C gene product has been purified to homogeneity from overexpressing yeast cells, and found to be a homodimeric ADH, composed of 40 kDa subunits and with a pI of 5.0-5.4. The enzyme was strictly specific for NADPH and was active with a wide variety of substrates, including aliphatic (linear and branched-chain) and aromatic primary alcohols and aldehydes. Aldehydes were processed with a 50-fold higher catalytic efficiency than that for the corresponding alcohols. The highest k(cat)/K(m) values were found with pentanal>veratraldehyde > hexanal > 3-methylbutanal >cinnamaldehyde. Taking into consideration the substrate specificity and sequence characteristics of the YMR318C gene product, we have proposed this gene to be called ADH6. The disruption of ADH6 was not lethal for the yeast under laboratory conditions. Although S. cerevisiae is considered a non lignin-degrading organism, the catalytic activity of ADHVI can direct veratraldehyde and anisaldehyde, arising from the oxidation of lignocellulose by fungal lignin peroxidases, to the lignin biodegradation pathway. ADHVI is the only S. cerevisiae enzyme able to significantly reduce veratraldehyde in vivo, and its overexpression allowed yeast to grow under toxic concentrations of this aldehyde. The enzyme may also be involved in the synthesis of fusel alcohols. To our knowledge this is the first NADPH-dependent medium-chain ADH to be characterized in S. cerevisiae.
Journal of Biological Chemistry | 2000
Eva González; María Rosario Fernández; Carol Larroy; Lluis Sola; Miquel A. Pericàs; Xavier Parés; Josep A. Biosca
The completion of theSaccharomyces cerevisiae genome project in 1996 showed that almost 60% of the potential open reading frames of the genome had no experimentally determined function. Using a conserved sequence motif present in the zinc-containing medium-chain alcohol dehydrogenases, we found several potential alcohol dehydrogenase genes with no defined function. One of these,YAL060W, was overexpressed using a multicopy inducible vector, and its protein product was purified to homogeneity. The enzyme was found to be a homodimer that, in the presence of NAD+, but not of NADP, could catalyze the stereospecific oxidation of (2R,3R)-2,3-butanediol (K m = 14 mm, k cat = 78,000 min− 1) and meso-butanediol (K m = 65 mm,k cat = 46,000 min− 1) to (3R)-acetoin and (3S)-acetoin, respectively. It was unable, however, to further oxidize these acetoins to diacetyl. In the presence of NADH, it could catalyze the stereospecific reduction of racemic acetoin ((3R/3S)- acetoin; K m = 4.5 mm, k cat = 98,000 min− 1) to (2R,3R)-2,3-butanediol andmeso-butanediol, respectively. The substrate stereospecificity was determined by analysis of products by gas-liquid chromatography. The YAL060W gene product can therefore be classified as an NAD-dependent (2R,3R)-2,3-butanediol dehydrogenase (BDH).S. cerevisiae could grow on 2,3-butanediol as the sole carbon and energy source. Under these conditions, a 3.5-fold increase in (2R,3R)-2,3-butanediol dehydrogenase activity was observed in the total cell extracts. The isoelectric focusing pattern of the induced enzyme coincided with that of the pure BDH (pI 6.9). The disruption of the YAL060W gene was not lethal for the yeast under laboratory conditions. The disrupted strain could also grow on 2,3-butanediol, although attaining a lesser cell density than the wild-type strain. Taking into consideration the substrate specificity of the YAL060W gene product, we propose the name of BDH for this gene. The corresponding enzyme is the first eukaryotic (2R,3R)-2,3-butanediol dehydrogenase characterized of the medium-chain dehydrogenase/reductase family.
Plant Physiology | 2003
Hakima Achkor; Maykelis Díaz; M. Rosario Fernández; Josep A. Biosca; Xavier Parés; M. Carmen Martínez
The ADH2 gene codes for the Arabidopsis glutathione-dependent formaldehyde dehydrogenase (FALDH), an enzyme involved in formaldehyde metabolism in eukaryotes. In the present work, we have investigated the potential role of FALDH in detoxification of exogenous formaldehyde. We have generated a yeast (Saccharomyces cerevisiae) mutant strain (sfa1Δ) by in vivo deletion of the SFA1 gene that codes for the endogenous FALDH. Overexpression of Arabidopsis FALDH in this mutant confers high resistance to formaldehyde added exogenously, which demonstrates the functional conservation of the enzyme through evolution and supports its essential role in formaldehyde metabolism. To investigate the role of the enzyme in plants, we have generated Arabidopsis transgenic lines with modified levels of FALDH. Plants overexpressing the enzyme show a 25% increase in their efficiency to take up exogenous formaldehyde, whereas plants with reduced levels of FALDH (due to either a cosuppression phenotype or to the expression of an antisense construct) show a marked slower rate and reduced ability for formaldehyde detoxification as compared with the wild-type Arabidopsis. These results show that the capacity to take up and detoxify high concentrations of formaldehyde is proportionally related to the FALDH activity in the plant, revealing the essential role of this enzyme in formaldehyde detoxification.
Applied and Environmental Microbiology | 2009
Maryam Ehsani; María Rosario Fernández; Josep A. Biosca; Anne Julien; Sylvie Dequin
ABSTRACT Engineered Saccharomyces cerevisiae strains overexpressing GPD1, which codes for glycerol-3-phosphate dehydrogenase, and lacking the acetaldehyde dehydrogenase Ald6 display large-scale diversion of the carbon flux from ethanol toward glycerol without accumulating acetate. Although GPD1 ald6 strains have great potential for reducing the ethanol contents in wines, one major side effect is the accumulation of acetoin, having a negative sensory impact on wine. Acetoin is reduced to 2,3-butanediol by the NADH-dependent 2,3-butanediol dehydrogenase Bdh1. In order to investigate the influence of potential factors limiting this reaction, we overexpressed BDH1, coding for native NADH-dependent Bdh1, and the engineered gene BDH1221,222,223, coding for an NADPH-dependent Bdh1 enzyme with the amino acid changes 221 EIA 223 to 221 SRS 223, in a glycerol-overproducing wine yeast. We have shown that both the amount of Bdh1 and the NADH availability limit the 2,3-butanediol dehydrogenase reaction. During wine fermentation, however, the major limiting factor was the level of synthesis of Bdh1. Consistent with this finding, the overproduction of native or engineered Bdh1 made it possible to redirect 85 to 90% of the accumulated acetoin into 2,3-butanediol, a compound with neutral sensory characteristics. In addition, the production of diacetyl, a compound causing off-flavor in alcoholic beverages, whose production is increased in glycerol-overproducing yeast cells, was decreased by half. The production of higher alcohols and esters, which was slightly decreased or unchanged in GPD1 ald6 cells compared to that in the control cells, was not further modified in BDH1 cells. Overall, rerouting carbons toward glycerol and 2,3-butanediol represents a new milestone in the engineering of a low-alcohol yeast with desirable organoleptic features, permitting the decrease of the ethanol contents in wines by up to 3°.
Cellular and Molecular Life Sciences | 2003
María Rosario Fernández; Josep A. Biosca; Xavier Parés
Abstract: S-nitrosoglutathione (GSNO) formation represents a mechanism for storage and transport of nitric oxide. Analysis of human liver and Saccharomyces cerevisiae extracts has revealed the presence of only one enzyme able to significantly reduce GSNO, identified as glutathione-dependent formaldehyde dehydrogenase (FALDH). GSNO is the best substrate known for the human and yeast enzymes (kcat/Km = 444,400 and 350,000 mM–1 min–1, respectively). Although NADH is the preferred cofactor, some activity with NADPH (Km = 460 μM) can be predicted in vivo. The subcellular localization demonstrates a cytosolic and nuclear distribution of FALDH in living yeast cells. This agrees with previous results in rat, and suggests a role in the regulation of GSNO levels in the cytoplasmic and nuclear compartments of the eukaryotic cell.
FEBS Letters | 1995
M. Rosario Fernández; Josep A. Biosca; Annika Norin; Hans Jörnvall; Xavier Parés
Alcohol dehydrogenase class III (glutathione‐dependent formaldehyde dehydrogenase) from Saccharomyces cerevisiae was purified and analyzed structurally and enzymatically. The corresponding gene was also analyzed after cloning from a yeast genome library by screening with a probe prepared through PCR amplification. As with class III alcohol dehydrogenase from other sources, the yeast protein was obtained in two active forms, deduced to reflect different adducts/modifications. Protein analysis established N‐terminal and C‐terminal positions, showing different and specific patterns in protein start positions between the human/mammalian, yeast, and prokaryotic forms. K m values with formaldehyde differ consistently, being about 10‐fold higher in the yeast than the human/mammalian enzymes, but compensated for by similar changes in κ cat values. This is compatible with the different functional needs, emphasizing low formaldehyde concentration in the animal cells but efficient formaldehyde elimination in the microorganisms. This supports a general role of the enzyme in formaldehyde detoxication rather than in long‐chain alcohol turnover.
Chemico-Biological Interactions | 2003
Carol Larroy; M. Rosario Fernández; Eva González; Xavier Parés; Josep A. Biosca
The completion of the Saccharomyces cerevisiae genome project has provided the opportunity to explore for new genes of the medium-chain dehydrogenase/reductase enzyme superfamily. Our group has recently identified a new gene, the YMR318C open reading frame, which coded for a Zn-containing NADP(H)-dependent alcohol dehydrogenase (ADHVI). ADHVI has been purified to homogeneity from over expressing yeast cells, and found to be a homodimer of 40 kDa subunits. The enzyme showed a strict specificity for NADP(H) and high activity with a variety of long chain aliphatic and bulky substrates. Aldehydes exhibited 50-12000 times higher catalytic efficiency than the corresponding alcohols. Substrates with high k(cat)/K(m) were: pentanal, veratraldehyde and cinnamaldehyde. The ADHVI expression was strongly induced when galactose was the sole carbon source in the culture medium. Phylogenetic trees include ADHVI in the cinnamyl alcohol dehydrogenase (CADH) family. In contrast to the plant CADH, involved in lignin biosynthesis, this is not the function for ADHVI, since yeast does not synthesize lignin. ADHVI may be physiologically involved in several steps of the lignin degradation pathway, initiated by other microorganisms, in the synthesis of fusel alcohols, products derived from the aminoacidic metabolism, and in the homeostasis of NADP(H). Disruption of ADH6 was not lethal for the yeast, under laboratory conditions.
Biotechnology and Bioengineering | 2009
Maryam Ehsani; María Rosario Fernández; Josep A. Biosca; Sylvie Dequin
Saccharomyces cerevisiae NAD(H)‐dependent 2,3‐butanediol dehydrogenase (Bdh1), a medium chain dehydrogenase/reductase is the main enzyme catalyzing the reduction of acetoin to 2,3‐butanediol. In this work we focused on altering the coenzyme specificity of Bdh1 from NAD(H) to NADP(H). Based on homology studies and the crystal structure of the NADP(H)‐dependent yeast alcohol dehydrogenase Adh6, three adjacent residues (Glu221, Ile222, and Ala223) were predicted to be involved in the coenzyme specificity of Bdh1 and were altered by site‐directed mutagenesis. Coenzyme reversal of Bdh1 was obtained with double Glu221Ser/Ile222Arg and triple Glu221Ser/Ile222Arg/Ala223Ser mutants. The performance of the triple mutant for NADPH was close to that of native Bdh1 for NADH. The three engineered mutants were able to restore the growth of a phosphoglucose isomerase deficient strain (pgi), which cannot grow on glucose unless an alternative NADPH oxidizing system is provided, thus demonstrating their in vivo functionality. These mutants are interesting tools to reduce the excess of acetoin produced by engineered brewing or wine yeasts overproducing glycerol. In addition, they represent promising tools for the manipulation of the NADP(H) metabolism and for the development of a powerful catalyst in biotransformations requiring NADPH regeneration. Biotechnol. Bioeng. 2009; 104: 381–389
Applied and Environmental Microbiology | 2010
Eva González; M. Rosario Fernández; Didac Marco; Eduard Calam; Lauro Sumoy; Xavier Parés; Sylvie Dequin; Josep A. Biosca
ABSTRACT NAD-dependent butanediol dehydrogenase (Bdh1p) from Saccharomyces cerevisiae reversibly transforms acetoin to 2,3-butanediol in a stereospecific manner. Deletion of BDH1 resulted in an accumulation of acetoin and a diminution of 2,3-butanediol in two S. cerevisiae strains under two different growth conditions. The concentrations of (2R,3R)-2,3-butanediol are mostly dependent on Bdh1p activity, while those of (meso)-2,3-butanediol are also influenced by the activity of NADP(H)-dependent oxidoreductases. One of them has been purified and shown to be d-arabinose dehydrogenase (Ara1p), which converts (R/S)-acetoin to meso-2,3-butanediol and (2S,3S)-2,3-butanediol. Deletion of BDH2, a gene adjacent to BDH1, whose encoded protein is 51% identical to Bdh1p, does not significantly alter the levels of acetoin or 2,3-butanediol in comparison to the wild-type strain. Furthermore, we have expressed Bdh2p with a histidine tag and have shown it to be inactive toward 2,3-butanediol. A whole-genome expression analysis with microarrays demonstrates that BDH1 and BDH2 are reciprocally regulated.
Chemico-Biological Interactions | 2001
Eva González; M. Rosario Fernández; Carol Larroy; Xavier Parés; Josep A. Biosca
Using a conserved sequence motif, a new gene (YAL060W) of the MDR family has been identified in Saccharomyces cerevisiae. The expressed protein was a stereoespecific (2R,3R)-2,3-butanediol dehydrogenase (BDH). The best substrates were (2R,3R)-2,3-butanediol for the oxidation and (3R/3S)-acetoin and 1-hydroxy-2-propanone for the reduction reactions. The enzyme is extremely specific for NAD(H) as cofactor, probably because the presence of Glu223 in the cofactor binding site, instead of the highly conserved Asp223. BDH is inhibited competitively by 4-methylpyrazole with a K(i) of 34 microM. Yeast could grow on 2,3-butanediol or acetoin as a sole energy and carbon sources, and a 3.6-fold increase in BDH activity was observed when cells were grown in 2,3-butanediol, suggesting a role of the enzyme in 2,3-butanediol metabolism. However, the disruption of the YAL060W gene was not lethal for the yeast under laboratory conditions, and the disrupted strain could also grow in 2,3-butanediol and acetoin. This suggests that other enzymes, in addition to BDH, can also metabolize 2,3-butanediol in yeast.