Josep C. Pàmies
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Josep C. Pàmies.
Journal of Chemical Physics | 2004
Fèlix Llovell; Josep C. Pàmies; Lourdes F. Vega
A modified version of the statistical associating fluid theory (SAFT), the so-called soft-SAFT equation of state (EOS), has been extended by a crossover treatment to take into account the long density fluctuations encountered when the critical region is approached. The procedure, based on Whites work from the renormalization group theory [Fluid Phase Equilibria 75, 53 (1992); L. W. Salvino and J. A. White, J. Chem. Phys. 96, 4559 (1992)], is implemented in terms of recursion relations where the density fluctuations are successively incorporated. The crossover soft-SAFT equation provides the correct nonclassical critical exponents when approaching the critical point, and reduces to the original soft-SAFT equation far from the critical region. The accuracy of the global equation is tested by direct comparison with molecular simulation results of Lennard-Jones chains, obtaining very good agreement and clear improvements compared to the original soft-SAFT EOS. Excellent agreement with vapor-liquid equilibrium experimental data inside and outside the critical region for the n-alkane series is also obtained. We provide a set of transferable molecular parameters for this family, unique for the whole range of thermodynamic properties.
Journal of Chemical Physics | 2009
Josep C. Pàmies; Angelo Cacciuto; Daan Frenkel
We report the phase diagram of interpenetrating Hertzian spheres. The Hertz potential is purely repulsive, bounded at zero separation, and decreases monotonically as a power law with exponent 5/2, vanishing at the overlapping threshold. This simple functional describes the elastic interaction of weakly deformable bodies and, therefore, it is a reliable physical model of soft macromolecules, like star polymers and globular micelles. Using thermodynamic integration and extensive Monte Carlo simulations, we computed accurate free energies of the fluid phase and a large number of crystal structures. For this, we defined a general primitive unit cell that allows for the simulation of any lattice. We found multiple re-entrant melting and first-order transitions between crystals with cubic, trigonal, tetragonal, and hexagonal symmetries.
Journal of Chemical Physics | 2004
Daniel Duque; Josep C. Pàmies; Lourdes F. Vega
We perform a series of molecular dynamics simulations of Lennard-Jones chains systems, up to tetramers, in order to investigate the influence of temperature and chain length on their phase separation and interfacial properties. Simulation results serve as a test to check the accuracy of a statistical associated fluid theory (soft-SAFT) coupled with the density gradient theory. We focus on surface tension and density profiles. The simulations allow us to discuss the success and limitations of the theory and how to estimate the only adjustable parameter, the influence parameter. This parameter is obtained by fitting the surface tension, and then used to obtain the density profiles in a predictive manner. A good agreement is found if the temperature dependence of this parameter is neglected.(c) 2004 American Institute of Physics.
Journal of Chemical Physics | 2005
Andrés Mejía; Josep C. Pàmies; Daniel Duque; Hugo Segura; Lourdes F. Vega
Density gradient theory (DGT) and molecular-dynamics (MD) simulations have been used to predict subcritical phase and interface behaviors in type-I and type-V equal-size Lennard-Jones mixtures. Type-I mixtures exhibit a continuum critical line connecting their pure critical components, which implies that their subcritical phase equilibria are gas liquid. Type-V mixtures are characterized by two critical lines and a heteroazeotropic line. One of the two critical lines begins at the more volatile pure component critical point up to an upper critical end point and the other one comes from the less volatile pure component critical point ending at a lower critical end point. The heteroazeotropic line connects both critical end points and is characterized by gas-liquid-liquid equilibria. Therefore, subcritical states of this type exhibit gas-liquid and gas-liquid-liquid equilibria. In order to obtain a correct characterization of the phase and interface behaviors of these types of mixtures and to directly compare DGT and MD results, the global phase diagram of equal-size Lennard-Jones mixtures has been used to define the molecular parameters of these mixtures. According to our results, DGT and MD are two complementary methodologies able to obtain a complete and simultaneous prediction of phase equilibria and their interfacial properties. For the type of mixtures analyzed here, both approaches have shown excellent agreement in their phase equilibrium and interface properties in the full concentration range.
Molecular Simulation | 2003
Josep C. Pàmies; Clare McCabe; Peter T. Cummings; Lourdes F. Vega
We present preliminary canonical molecular dynamics (MD) and Gibbs ensemble Monte Carlo (GEMC) results for the vapour-liquid orthobaric densities of methane and propane. Computational advantages and drawbacks of both simulation methods are discussed and future work is outlined on the application of these techniques to the calculation of transport and interfacial properties. n -Alkanes are described through the TraPPE-UA force field. We study the effect of the truncation of interactions in the Lennard-Jones potential on the accuracy of the orthobaric liquid densities for these inhomogeneous systems along the phase diagram. We observed that a cut-off of at least 5.5 times the Lennard-Jones diameter is needed to obtain accurate results for saturated liquid densities.
Physical Review Letters | 2011
Josep C. Pàmies; Angelo Cacciuto
Elastic sheets with macroscopic dimensions are easy to deform by bending and stretching. Yet shaping nanometric sheets by mechanical manipulation is hard. Here we show that nanoparticle self-assembly could be used to this end. We demonstrate that spherical nanoparticles adhering to the outer surface of an elastic nanotube can self-assemble into linear structures: rings or helices on stretchable nanotubes, and axial strings on nanotubes with high rigidity to stretching. These self-assembled structures are inextricably linked to a variety of deformed nanotube profiles, which can be controlled by tuning the concentration of nanoparticles, the nanoparticle-nanotube diameter ratio and the elastic properties of the nanotube. Our results open the possibility of designing nanoparticle-laden tubular nanostructures with tailored shapes, for potential applications in materials science and nanomedicine.
Physical Review Letters | 2010
Andela Šarić; Josep C. Pàmies; Angelo Cacciuto
We use numerical simulations to show how a fully flexible filament binding to a deformable cylindrical surface may acquire a macroscopic persistence length and a helical conformation. This is a result of the nontrivial elastic response to deformations of elastic sheets. We find that the filaments helical pitch is completely determined by the mechanical properties of the surface, and can be easily tuned by varying the surface stretching rigidity. We propose simple scaling arguments to understand the physical mechanism behind this phenomenon and present a phase diagram indicating under what conditions one should expect a fully flexible chain to behave as a helical semiflexible filament. Finally, we discuss the implications of our results.
Journal of Chemical Physics | 2010
Behnaz Bozorgui; Maya Sen; William L. Miller; Josep C. Pàmies; Angelo Cacciuto
We report molecular dynamics simulations of a system of repulsive, polymer-tethered colloidal particles. We use an explicit polymer model to explore how the length and the behavior of the polymer (ideal or self-avoiding) affect the ability of the particles to organize into ordered structures when the system is compressed to moderate volume fractions. We find a variety of different phases whose origin can be explained in terms of the configurational entropy of polymers and colloids. Finally, we discuss and compare our results to those obtained for similar systems using simplified coarse-grained polymer models, and set the limits of their applicability.
Journal of Chemical Physics | 2004
Carmelo Herdes; Josep C. Pàmies; Rosa M. Marcos; Lourdes F. Vega
The goal of this work is twofold: to predict the phase equilibria behavior of simplified surfactant models and to predict the population of aggregates as a function of pressure. We compare Monte Carlo simulation results of these systems with predictions from a modified version of the statistical associating fluid theory (soft-SAFT). Surfactant-like molecules are modeled as Lennard-Jones chains of tangent segments with one or two association sites. We study the influence of the number and location of the association sites on the thermodynamic properties and fraction of nonbonded molecules in all cases. The influence of the chain length is also investigated for a particular location of the sites. Results are compared with NPT Monte Carlo simulations to test the accuracy of the theory, and to study the molecular configurations of the system. Soft-SAFT is able to quantitatively predict the MC PVT results, independently of the location of the association sites. The theory is also able to capture the qualitative trend of the population of aggregates with pressure. Quantitative agreement is only obtained for specific locations of the sites.
Computer-aided chemical engineering | 2005
Lourdes F. Vaga; Josep C. Pàmies; Fèlix Llovell; Carmelo Herdes; Daniel Duque; Rosa M. Marcos
Abstract We outline here some of the steps we are taking towards the development of reliable tools for quantitative predictions of thermodynamic properties of complex fluids with equations based on statistical mechanics. The long term objective is to provide a user-friendly computer code and a wide database of molecular parameters for different compounds, able to be implemented in a process simulator. We have observed that the keys of the success when using molecular modelling tools for predictions rely on the selection of the appropriate model, representative of the molecular structure, and the use of physically meaningful molecular parameters.