Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Josep Ferré-Borrull is active.

Publication


Featured researches published by Josep Ferré-Borrull.


Applied Optics | 2002

Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components

Angela Duparré; Josep Ferré-Borrull; Stefan Gliech; Gunther Notni; Jörg Steinert; Jean M. Bennett

Surface topography and light scattering were measured on 15 samples ranging from those having smooth surfaces to others with ground surfaces. The measurement techniques included an atomic force microscope, mechanical and optical profilers, confocal laser scanning microscope, angle-resolved scattering, and total scattering. The samples included polished and ground fused silica, silicon carbide, sapphire, electroplated gold, and diamond-turned brass. The measurement instruments and techniques had different surface spatial wavelength band limits, so the measured roughnesses were not directly comparable. Two-dimensional power spectral density (PSD) functions were calculated from the digitized measurement data, and we obtained rms roughnesses by integrating areas under the PSD curves between fixed upper and lower band limits. In this way, roughnesses measured with different instruments and techniques could be directly compared. Although smaller differences between measurement techniques remained in the calculated roughnesses, these could be explained mostly by surface topographical features such as isolated particles that affected the instruments in different ways.


Advanced Materials | 2012

Nanoporous Anodic Alumina Barcodes: Toward Smart Optical Biosensors

Abel Santos; Victor S. Balderrama; María D. Alba; Pilar Formentín; Josep Ferré-Borrull; Josep Pallarès; L.F. Marsal

Toward a smart optical biosensor based on nanoporous anodic alumina (NAA): by modifying the pore geometry in nanoporous anodic alumina we are able to change the effective medium at will and tune the photoluminescence of NAA. The oscillations in the PL spectrum are converted into exclusive barcodes, which are useful for developing optical biomedical sensors in the UV-Visible region.


Surface Science | 2000

Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations

Salvador Bosch; Josep Ferré-Borrull; Norbert Leinfellner; A. Canillas

A numerical procedure for solving the mathematical equations that define the effective medium for a mixture of materials is presented. The basic idea is to transform the inherent complex root-finding problem into a minimization task in real space so that the method can be implemented through a standard two-dimensional minimization algorithm. This leads to general, simple and useful procedures for ellipsometric and/or spectrophotometric data analysis in the optical characterization of materials and surfaces.


Analytical Chemistry | 2014

Structural and Optical Nanoengineering of Nanoporous Anodic Alumina Rugate Filters for Real-Time and Label-Free Biosensing Applications

Tushar Kumeria; Mohammad Mahbubur Rahman; Abel Santos; Josep Ferré-Borrull; L.F. Marsal; Dusan Losic

In this study, we report about the structural engineering and optical optimization of nanoporous anodic alumina rugate filters (NAA-RFs) for real-time and label-free biosensing applications. Structurally engineered NAA-RFs are combined with reflection spectroscopy (RfS) in order to develop a biosensing system based on the position shift of the characteristic peak in the reflection spectrum of NAA-RFs (Δλpeak). This system is optimized and assessed by measuring shifts in the characteristic peak position produced by small changes in the effective medium (i.e., refractive index). To this end, NAA-RFs are filled with different solutions of d-glucose, and the Δλpeak is measured in real time by RfS. These results are validated by a theoretical model (i.e., the Looyenga-Landau-Lifshitz model), demonstrating that the control over the nanoporous structure makes it possible to optimize optical signals in RfS for sensing purposes. The linear range of these optical sensors ranges from 0.01 to 1.00 M, with a low detection limit of 0.01 M of d-glucose (i.e., 1.80 ppm), a sensitivity of 4.93 nm M(-1) (i.e., 164 nm per refractive index units), and a linearity of 0.998. This proof-of-concept study demonstrates that the proposed system combining NAA-RFs with RfS has outstanding capabilities to develop ultrasensitive, portable, and cost-competitive optical sensors.


Applied Optics | 2002

Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation

Detlev Ristau; Stefan Günster; Salvador Bosch; Angela Duparré; Enrico Masetti; Josep Ferré-Borrull; George Kiriakidis; F. Peiró; Etienne Quesnel; Alexander V. Tikhonravov

Single layers of MgF2 and LaF3 were deposited upon superpolished fused-silica and CaF2 substrates by ion-beam sputtering (IBS) as well as by boat and electron beam (e-beam) evaporation and were characterized by a variety of complementary analytical techniques. Besides undergoing photometric and ellipsometric inspection, the samples were investigated at 193 and 633 nm by an optical scatter measurement facility. The structural properties were assessed with atomic-force microscopy, x-ray diffraction, TEM techniques that involved conventional thinning methods for the layers. For measurement of mechanical stress in the coatings, special silicon substrates were coated and analyzed. The dispersion behavior of both deposition materials, which was determined on the basis of various independent photometric measurements and data reduction techniques, is in good agreement with that published in the literature and with the bulk properties of the materials. The refractive indices of the MgF2 coatings ranged from 1.415 to 1.440 for the wavelength of the ArF excimer laser (193 nm) and from 1.435 to 1.465 for the wavelength of the F2 excimer laser (157 nm). For single layers of LaF3 the refractive indices extended from 1.67 to 1.70 at 193 nm to approximately 1.80 at 157 nm. The IBS process achieves the best homogeneity and the lowest surface roughness values (close to 1 nm(rms)) of the processes compared in the joint experiment. In contrast to MgF2 boat and e-beam evaporated coatings, which exhibit tensile mechanical stress ranging from 300 to 400 MPa, IBS coatings exhibit high compressive stress of as much as 910 MPa. A similar tendency was found for coating stress in LaF3 single layers. Experimental results are discussed with respect to the microstructural and compositional properties as well as to the surface topography of the coatings.


ACS Applied Materials & Interfaces | 2013

Gold-coated ordered nanoporous anodic alumina bilayers for future label-free interferometric biosensors.

Gerard Macias; Laura P. Hernández-Eguía; Josep Ferré-Borrull; Josep Pallarès; L.F. Marsal

A cost-effective label-free optical biosensor based on gold-coated self-ordered nanoporous anodic alumina bilayers is presented. The structure is formed by two uniform nanoporous layers of different porosity (i.e., a top layer with large pores and a bottom layer with smaller pores). Each layer presents uniform pore size, regular pore distribution, and regular diameter along its pore length. To increase and improve the output sensing signals, a thin gold layer on the top surface was deposited. The gold layer increases the refractive index contrast between the nanoporous alumina layer and the analytical aqueous solution, and it results in a greater contrast in the interferometric spectrum and a higher sensitivity of the structure. From this structurally engineered architecture, the resulting reflectivity spectrum shows a complex series of Fabry-Pérot interference fringes, which was analyzed by the reflective interferometric Fourier transform spectroscopy (RIFTS) method. To determine the performance of this structure for biosensing applications, we tested bovine serum albumin (BSA) as the target protein. The results show a significant enhancement of the RIFTS peak intensity and position when a gold layer is on the top surface.


ACS Applied Materials & Interfaces | 2012

Photoluminescent Enzymatic Sensor Based on Nanoporous Anodic Alumina

Abel Santos; Gerard Macias; Josep Ferré-Borrull; Josep Pallarès; L.F. Marsal

Herein, we present a smart enzymatic sensor based on nanoporous anodic alumina (NAA) and its photoluminescence (PL) in the UV-visible range. The as-produced structure of NAA is functionalized and activated in order to perform the enzyme immobilization in a controlled manner. The whole process is monitored through the PL spectrum and each stage is characterized by an exclusive barcode, which is associated with the PL oscillations. This characteristic property allows us to calculate the change in the effective optical thickness that takes place after each stage. This makes it possible to accurately detect and quantify the immobilized enzyme within the NAA structure. Finally, the NAA geometry (i.e., the pore length and its diameter) is optimized to improve the enzyme immobilization and its detection inside the pores. This enzymatic sensor can give quick and accurate measurements of enzyme levels, what is crucial in clinical enzymology to prevent and detect diseases at their primary stage.


Angewandte Chemie | 2013

Macroscale Plasmonic Substrates for Highly Sensitive Surface-Enhanced Raman Scattering

María D. Alba; Nicolas Pazos-Perez; Belén Vaz; Pilar Formentín; Moritz Tebbe; Miguel A. Correa-Duarte; Pedro Granero; Josep Ferré-Borrull; Rosana Alvarez; Josep Pallarès; Andreas Fery; Angel R. de Lera; L.F. Marsal; Ramon A. Alvarez-Puebla

The fabrication of macroscale optical materials from plasmonic nanoscale building blocks is the focus of much current multidisciplinary research. In these macromaterials, the nanoscale properties are preserved, and new (metamaterial) properties are generated as a direct result of the interaction of their ordered constituents.1 These macroscale plasmonic assemblies have found application in a myriad of fields, including nanophotonics, nonlinear optics, and optical sensing.2 Owing to their specific requirements in terms of size and shape, their fabrication is not trivial and was until recently restricted to the use of lithographic techniques, especially those based on electron- or ion-beam patterning.3 However, these techniques are not only expensive, time-consuming, and demanding but are also restricted to small simple and solid geometries, which are good for proof of concepts but less suitable for real-life applications. Approaches based on colloidal chemistry are gaining relevance as an alternative. During the past few years, several examples of the fabrication of organized particles have been reported, including the preparation of complex colloidal particles4 and the use of preformed colloids to create large crystalline organized entities known as supercrystals.5 The latter approach provides optical platforms with unprecedented plasmonic properties that can be exploited for the design of cheap ultrasensitive and ultrafast sensors with surface-enhanced Raman scattering (SERS)6 spectroscopy as the transducer.


ACS Applied Materials & Interfaces | 2013

Tuning the Photonic Stop Bands of Nanoporous Anodic Alumina-Based Distributed Bragg Reflectors by Pore Widening

Mohammad Mahbubur Rahman; L.F. Marsal; Josep Pallarès; Josep Ferré-Borrull

A distributed Bragg reflector based on nanoporous anodic alumina was fabricated using an innovative cyclic anodization voltage approach, which resulted in an in-depth modulation of the pore geometry and the refractive index. The effect of a pore-widening wet-etching step on the structures photonic stop-band properties was studied. From transmittance measurements, it was shown that by changing the pore-widening time it is possible to modulate the photonic stop band in the range of visible to near infrared. With the help of a theoretical model, we were able to obtain information about the evolution with the pore widening of the material effective refractive indexes. This opens the possibility of obtaining several optoelectronic devices based on nanoporous anodic alumina.


ACS Applied Materials & Interfaces | 2014

Nanoporous Anodic Alumina Rugate Filters for Sensing of Ionic Mercury: Toward Environmental Point-of-Analysis Systems

Tushar Kumeria; Mohammad Mahbubur Rahman; Abel Santos; Josep Ferré-Borrull; L.F. Marsal; Dusan Losic

Herein, we present an ultrasensitive, cost-competitive, and portable optical sensing system for detecting ionic mercury in environmental water. This analytical system combines structurally engineered and chemically modified nanoporous anodic alumina rugate filters (NAA-RFs) with reflection spectroscopy (RfS). The sensing performance of the proposed system is assessed through several tests, establishing its sensing performance (i.e., linear working range from 1 to 100 μM of Hg(2+), low limit of detection 1 μM of Hg(2+) ions (i.e., 200 ppb), and sensitivity of 0.072 nm μM(-1)), chemical selectivity (i.e., exposure to different metal ions Co(2+), Mg(2+), Ni(2+), Cu(2+), Pb(2+), Fe(3+), Ca(2+), Cr(6+), and Ag(+)) and metal ions binding mechanism (i.e., fitting to Langmuir and Freundlich isotherm models). Furthermore, the detection of Hg(2+) ions in tap and environmental water (River Torrens) is successfully carried out, demonstrating the suitability of this system for developing environmental point-of-analysis systems.

Collaboration


Dive into the Josep Ferré-Borrull's collaboration.

Top Co-Authors

Avatar

Josep Pallarès

Rovira i Virgili University

View shared research outputs
Top Co-Authors

Avatar

L.F. Marsal

Rovira i Virgili University

View shared research outputs
Top Co-Authors

Avatar

Abel Santos

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

María D. Alba

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Raquel Palacios

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Elisabet Xifré-Pérez

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

T. Trifonov

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge