Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Josep M. Mercader is active.

Publication


Featured researches published by Josep M. Mercader.


Bioinformatics | 2007

SNPassoc: an R package to perform whole genome association studies

Juan R. González; Lluís Armengol; Xavier Solé; Elisabet Guinó; Josep M. Mercader; Xavier Estivill; Victor Moreno

UNLABELLED The popularization of large-scale genotyping projects has led to the widespread adoption of genetic association studies as the tool of choice in the search for single nucleotide polymorphisms (SNPs) underlying susceptibility to complex diseases. Although the analysis of individual SNPs is a relatively trivial task, when the number is large and multiple genetic models need to be explored it becomes necessary a tool to automate the analyses. In order to address this issue, we developed SNPassoc, an R package to carry out most common analyses in whole genome association studies. These analyses include descriptive statistics and exploratory analysis of missing values, calculation of Hardy-Weinberg equilibrium, analysis of association based on generalized linear models (either for quantitative or binary traits), and analysis of multiple SNPs (haplotype and epistasis analysis). AVAILABILITY Package SNPassoc is available at CRAN from http://cran.r-project.org. SUPPLEMENTARY INFORMATION A tutorial is available on Bioinformatics online and in http://davinci.crg.es/estivill_lab/snpassoc.


Biological Psychiatry | 2007

Brain-Derived Neurotrophic Factor Val66Met and Psychiatric Disorders: Meta-Analysis of Case-Control Studies Confirm Association to Substance-Related Disorders, Eating Disorders, and Schizophrenia

Mònica Gratacòs; Juan R. González; Josep M. Mercader; Rafael de Cid; Mikel Urretavizcaya; Xavier Estivill

BACKGROUND There is an increasing recognition that the pathophysiology of mental disorders could be the result of deregulation of synaptic plasticity with alterations of neurotrophins. The valine (Val)66-to-methionine (Met) variant, located in the pro brain-derived neurotrophic factor (BDNF) sequence, has been extensively studied through linkage and association approaches in several psychiatric disorders. METHODS We performed a meta-analysis restricted to individual case-control studies in different categories of mental disorders and BDNF Val66Met polymorphism. We included data from 39 case-control studies encompassing psychiatric phenotypes: eating disorders, substance-related disorders, mood disorders, and schizophrenia, among others. RESULTS The association of Val66Met was confined to three diagnoses: substance-related disorders, eating disorders, and schizophrenia. The Val/Met and the Met/Met genotypes increase the risk for eating disorders up to 33%, while these same genotypes confer a 21% protective effect in substance-related disorders. The homozygous carriers Met/Met showed a 19% increased risk of schizophrenia with respect to the heterozygous state. CONCLUSIONS The study confirms the association of Val66Met to substance-related disorders, eating disorders, and schizophrenia. It remains to be determined if other variants in tight linkage disequilibrium with Val66Met could configure an extended functional haplotype that would explain observed discrepancies in risk estimations across studies.


Nature Genetics | 2014

A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations

Klaus Bønnelykke; Patrick Sleiman; Kasper Nielsen; Eskil Kreiner-Møller; Josep M. Mercader; Danielle Belgrave; Herman T. den Dekker; Anders Husby; Astrid Sevelsted; Grissel Faura-Tellez; Li Mortensen; Lavinia Paternoster; Richard Flaaten; Anne Mølgaard; David E. Smart; Philip Francis Thomsen; Morten Rasmussen; Sílvia Bonàs-Guarch; Claus Holst; Ellen Aagaard Nohr; Rachita Yadav; Michael March; Thomas Blicher; Peter M. Lackie; Vincent W. V. Jaddoe; Angela Simpson; John W. Holloway; Liesbeth Duijts; Adnan Custovic; Donna E. Davies

Asthma exacerbations are among the most frequent causes of hospitalization during childhood, but the underlying mechanisms are poorly understood. We performed a genome-wide association study of a specific asthma phenotype characterized by recurrent, severe exacerbations occurring between 2 and 6 years of age in a total of 1,173 cases and 2,522 controls. Cases were identified from national health registries of hospitalization, and DNA was obtained from the Danish Neonatal Screening Biobank. We identified five loci with genome-wide significant association. Four of these, GSDMB, IL33, RAD50 and IL1RL1, were previously reported as asthma susceptibility loci, but the effect sizes for these loci in our cohort were considerably larger than in the previous genome-wide association studies of asthma. We also obtained strong evidence for a new susceptibility gene, CDHR3 (encoding cadherin-related family member 3), which is highly expressed in airway epithelium. These results demonstrate the strength of applying specific phenotyping in the search for asthma susceptibility genes.


Clinical Chemistry | 2013

Targeting the Circulating MicroRNA Signature of Obesity

Francisco Ortega; Josep M. Mercader; Victoria Catalán; José María Moreno-Navarrete; Neus Pueyo; Mònica Sabater; Javier Gómez-Ambrosi; Roger Anglada; José Antonio Fernández-Formoso; Wifredo Ricart; Gema Frühbeck; José Manuel Fernández-Real

BACKGROUND Genomic studies have yielded important insights into the pathogenesis of obesity. Circulating microRNAs (miRNAs) are valuable biomarkers of systemic diseases and potential therapeutic targets. We sought to define the circulating pattern of miRNAs in obesity and examine changes after weight loss. METHODS We assessed the genomewide circulating miRNA profile cross-sectionally in 32 men and after surgery-induced weight loss in 6 morbidly obese patients. The most relevant miRNAs were cross-sectionally validated in 80 men and longitudinally in 22 patients (after surgery-induced weight loss). We evaluated the effects of diet-induced weight loss in 9 obese patients. Thirty-six circulating miRNAs were associated with anthropometric variables in the initial sample. RESULTS In the validation study, morbidly obese patients showed a marked increase of miR-140-5p, miR-142-3p (both P < 0.0001), and miR-222 (P = 0.0002) and decreased levels of miR-532-5p, miR-125b, miR-130b, miR-221, miR-15a, miR-423-5p, and miR-520c-3p (P < 0.0001 for all). Interestingly, in silico targets leukemia inhibitory factor receptor (LIFR) and transforming growth factor receptor (TGFR) of miR-140-5p, miR-142-3p, miR-15a, and miR-520c-3p circulated in association with their corresponding miRNAs. Moreover, a discriminant function of 3 miRNAs (miR-15a, miR-520c-3p, and miR-423-5p) was specific for morbid obesity, with an accuracy of 93.5%. Surgery-induced (but not diet-induced) weight loss led to a marked decrease of miR-140-5p, miR-122, miR-193a-5p, and miR-16-1 and upregulation of miR-221 and miR-199a-3p (P < 0.0001 for all). CONCLUSIONS Circulating miRNAs are deregulated in severe obesity. Weight loss-induced changes in this profile and the study of in silico targets support this observation and suggest a potential mechanistic relevance.


Diabetes Care | 2014

Profiling of Circulating MicroRNAs Reveals Common MicroRNAs Linked to Type 2 Diabetes That Change With Insulin Sensitization

Francisco Ortega; Josep M. Mercader; José María Moreno-Navarrete; Oscar Rovira; Ester Guerra; Eduardo Esteve; Cristina Martínez; Wifredo Ricart; Jennifer Rieusset; Sophie Rome; Monika Karczewska-Kupczewska; Marek Straczkowski; José Manuel Fernández-Real

OBJECTIVE This study sought to identify the profile of circulating microRNAs (miRNAs) in type 2 diabetes (T2D) and its response to changes in insulin sensitivity. RESEARCH DESIGN AND METHODS The circulating miRNA profile was assessed in a pilot study of 12 men: 6 with normal glucose tolerance (NGT) and 6 T2D patients. The association of 10 circulating miRNAs with T2D was cross-sectionally validated in an extended sample of 45 NGT vs. 48 T2D subjects (65 nonobese and 28 obese men) and longitudinally in 35 T2D patients who were recruited in a randomized, double-blinded, and placebo-controlled 3-month trial of metformin treatment. Circulating miRNAs were also measured in seven healthy volunteers before and after a 6-h hyperinsulinemic-euglycemic clamp and insulin plus intralipid/heparin infusion. RESULTS Cross-sectional studies disclosed a marked increase of miR-140-5p, miR-142-3p, and miR-222 and decreased miR-423-5p, miR-125b, miR-192, miR-195, miR-130b, miR-532-5p, and miR-126 in T2D patients. Multiple linear regression analyses revealed that miR-140-5p and miR-423-5p contributed independently to explain 49.5% (P < 0.0001) of fasting glucose variance after controlling for confounders. A discriminant function of four miRNAs (miR-140-5p, miR-423-5p, miR-195, and miR-126) was specific for T2D with an accuracy of 89.2% (P < 0.0001). Metformin (but not placebo) led to significant changes in circulating miR-192 (49.5%; P = 0.022), miR-140-5p (−15.8%; P = 0.004), and miR-222 (−47.2%; P = 0.03), in parallel to decreased fasting glucose and HbA1c. Furthermore, while insulin infusion during clamp decreased miR-222 (−62%; P = 0.002), the intralipid/heparin mixture increased circulating miR-222 (163%; P = 0.015) and miR-140-5p (67.5%; P = 0.05). CONCLUSIONS This study depicts the close association between variations in circulating miRNAs and T2D and their potential relevance in insulin sensitivity.


Nature Medicine | 2017

Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug

Hao Wu; Eduardo Esteve; Valentina Tremaroli; Muhammad Tanweer Khan; Robert Caesar; Louise Mannerås-Holm; Marcus Ståhlman; Lisa M Olsson; Matteo Serino; Mercè Planas-Fèlix; Josep M. Mercader; David Torrents; Rémy Burcelin; Wifredo Ricart; Rosie Perkins; José Manuel Fernández-Real; Fredrik Bäckhed

Metformin is widely used in the treatment of type 2 diabetes (T2D), but its mechanism of action is poorly defined. Recent evidence implicates the gut microbiota as a site of metformin action. In a double-blind study, we randomized individuals with treatment-naive T2D to placebo or metformin for 4 months and showed that metformin had strong effects on the gut microbiome. These results were verified in a subset of the placebo group that switched to metformin 6 months after the start of the trial. Transfer of fecal samples (obtained before and 4 months after treatment) from metformin-treated donors to germ-free mice showed that glucose tolerance was improved in mice that received metformin-altered microbiota. By directly investigating metformin–microbiota interactions in a gut simulator, we showed that metformin affected pathways with common biological functions in species from two different phyla, and many of the metformin-regulated genes in these species encoded metalloproteins or metal transporters. Our findings provide support for the notion that altered gut microbiota mediates some of metformins antidiabetic effects.


JAMA | 2014

Association of a Low-Frequency Variant in HNF1A With Type 2 Diabetes in a Latino Population

Karol Estrada; Ingvild Aukrust; Lise Bjørkhaug; Noël P. Burtt; Josep M. Mercader; Humberto García-Ortiz; Alicia Huerta-Chagoya; Hortensia Moreno-Macías; Geoffrey A. Walford; Jason Flannick; Amy Williams; María J. Gómez-Vázquez; Juan Carlos Fernández-López; Angélica Martínez-Hernández; Silvia Jiménez-Morales; Federico Centeno-Cruz; Elvia Mendoza-Caamal; Cristina Revilla-Monsalve; Sergio Islas-Andrade; Emilio J. Córdova; Xavier Soberón; María Elena González-Villalpando; E. Henderson; Lynne R. Wilkens; Loic Le Marchand; Olimpia Arellano-Campos; María Luisa Ordóñez-Sánchez; Maribel Rodríguez-Torres; Rosario Rodríguez-Guillén; Laura Riba

IMPORTANCE Latino populations have one of the highest prevalences of type 2 diabetes worldwide. OBJECTIVES To investigate the association between rare protein-coding genetic variants and prevalence of type 2 diabetes in a large Latino population and to explore potential molecular and physiological mechanisms for the observed relationships. DESIGN, SETTING, AND PARTICIPANTS Whole-exome sequencing was performed on DNA samples from 3756 Mexican and US Latino individuals (1794 with type 2 diabetes and 1962 without diabetes) recruited from 1993 to 2013. One variant was further tested for allele frequency and association with type 2 diabetes in large multiethnic data sets of 14,276 participants and characterized in experimental assays. MAIN OUTCOME AND MEASURES Prevalence of type 2 diabetes. Secondary outcomes included age of onset, body mass index, and effect on protein function. RESULTS A single rare missense variant (c.1522G>A [p.E508K]) was associated with type 2 diabetes prevalence (odds ratio [OR], 5.48; 95% CI, 2.83-10.61; P = 4.4 × 10(-7)) in hepatocyte nuclear factor 1-α (HNF1A), the gene responsible for maturity onset diabetes of the young type 3 (MODY3). This variant was observed in 0.36% of participants without type 2 diabetes and 2.1% of participants with it. In multiethnic replication data sets, the p.E508K variant was seen only in Latino patients (n = 1443 with type 2 diabetes and 1673 without it) and was associated with type 2 diabetes (OR, 4.16; 95% CI, 1.75-9.92; P = .0013). In experimental assays, HNF-1A protein encoding the p.E508K mutant demonstrated reduced transactivation activity of its target promoter compared with a wild-type protein. In our data, carriers and noncarriers of the p.E508K mutation with type 2 diabetes had no significant differences in compared clinical characteristics, including age at onset. The mean (SD) age for carriers was 45.3 years (11.2) vs 47.5 years (11.5) for noncarriers (P = .49) and the mean (SD) BMI for carriers was 28.2 (5.5) vs 29.3 (5.3) for noncarriers (P = .19). CONCLUSIONS AND RELEVANCE Using whole-exome sequencing, we identified a single low-frequency variant in the MODY3-causing gene HNF1A that is associated with type 2 diabetes in Latino populations and may affect protein function. This finding may have implications for screening and therapeutic modification in this population, but additional studies are required.


The Journal of Clinical Endocrinology and Metabolism | 2013

Changes in Circulating MicroRNAs Are Associated With Childhood Obesity

Anna Prats-Puig; Francisco Ortega; Josep M. Mercader; José María Moreno-Navarrete; María Moreno; Núria Bonet; Wifredo Ricart; Abel López-Bermejo; José Manuel Fernández-Real

CONTEXT Circulating microRNAs (miRNAs) are valuable biomarkers of metabolic diseases and potential therapeutic targets in this field. OBJECTIVE Our objective was to define the circulating pattern of miRNAs in childhood obesity. DESIGN, SETTINGS, AND MAIN OUTCOME MEASURE: The genome-wide circulating miRNA profile was assessed by RT-PCR in 10 boys (5 lean and 5 obese children). The most relevant miRNAs were cross-sectionally validated in 85 lean versus 40 obese children (63 boys and 62 girls) and longitudinally evaluated in samples from the same children when they were ≈ 7 and ≈ 10 years old (23 boys and 22 girls). RESULTS The cross-sectional validation study disclosed that 15 specific circulating miRNAs were significantly deregulated in prepubertal obesity, including the decreased miR-221 and miR-28-3p and increased concentrations in plasma of miR-486-5p, miR-486-3p, miR-142-3p, miR-130b, and miR-423-5p (all P < .0001). The circulating concentration of these miRNAs was significantly associated with body mass index and other measures of obesity such as percent fat mass, waist, regional fat distribution and with laboratory parameters such as homeostasis model assessment of insulin resistance, high-molecular-weight adiponectin, C-reactive protein, and circulating lipids in concordance with anthropometric associations. Plasma concentrations of 10 of these circulating miRNAs changed significantly and differently during the 3-year follow-up in children who increased or decreased their normalized weight. CONCLUSION This study provides the first evidence that circulating miRNAs are deregulated in prepubertal obese children. Thus, the very early detection of an abnormal circulating miRNA profile may be a promising strategy to identify obese children who may suffer from metabolic abnormalities.


Genes, Brain and Behavior | 2007

Altered brain-derived neurotrophic factor blood levels and gene variability are associated with anorexia and bulimia

Josep M. Mercader; Marta Ribasés; Mònica Gratacòs; Juan R. González; M. Bayés; R. de Cid; Anna Badía; Fernando Fernández-Aranda; Xavier Estivill

Murine models and association studies in eating disorder (ED) patients have shown a role for the brain‐derived neurotrophic factor (BDNF) in eating behavior. Some studies have shown association of BDNF −270C/T single‐nucleotide polymorphism (SNP) with bulimia nervosa (BN), while BDNF Val66Met variant has been shown to be associated with both BN and anorexia nervosa (AN). To further test the role of this neurotrophin in humans, we screened 36 SNPs in the BDNF gene and tested for their association with ED and plasma BDNF levels as a quantitative trait. We performed a family‐based association study in 106 ED nuclear families and analyzed BDNF blood levels in 110 ED patients and in 50 sib pairs discordant for ED. The rs7124442T/rs11030102C/rs11030119G haplotype was found associated with high BDNF levels (mean BDNF TCG haplotype carriers = 43.6 ng/ml vs. mean others 23.0 ng/ml, P = 0.016) and BN (Z = 2.64; P recessive = 0.008), and the rs7934165A/270T haplotype was associated with AN (Z =−2.64; P additive = 0.008). The comparison of BDNF levels in 50 ED discordant sib pairs showed elevated plasma BDNF levels for the ED group (mean controls = 41.0 vs. mean ED = 52.7; P = 0.004). Our data strongly suggest that altered BDNF levels modulated by BDNF gene variability are associated with the susceptibility to ED, providing physiological evidence that BDNF plays a role in the development of AN and BN, and strongly arguing for its involvement in eating behavior and body weight regulation.


Cellular Physiology and Biochemistry | 2007

All-Trans Retinoic Acid Increases Oxidative Metabolism in Mature Adipocytes

Josep M. Mercader; Lise Madsen; Francisco Felipe; Andreu Palou; Karsten Kristiansen; M. Luisa Bonet

Background/Aims: In rodents, retinoic acid (RA) treatment favors loss of body fat mass and the acquisition of brown fat features in white fat depots. In this work, we sought to examine to what extent these RA effects are cell autonomous or dependent on systemic factors. Methods: Parameters of lipid metabolism and related gene expression were analyzed in differentiated 3T3-L1 adipocytes after exposure to RA or vehicle. Results: Treatment with RA resulted in decreased cellular triacylglycerol content and increased basal lipolysis and fatty acid oxidation rate. At the mRNA level, RA treatment led to a reduced expression of adipogenic/lipogenic transcription factors (peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, rexinoid receptor alpha) and two purported suppressors of lipolysis and oxidative metabolism (CIDEA and receptor-interacting protein 140), and to an increased expression of proteins favoring fat oxidation (peroxisome proliferator-activated receptor gamma coactivator-1alpha, uncoupling protein 2, fasting-induced adipose factor, enzymes of mitochondrial fatty acid oxidation). These changes paralleled inactivation of the retinoblastoma protein and were preceded by an early RA-induced phosphorylation of p38 mitogen-activated protein kinase. UCP1 expression was not induced. Conclusion: The results indicate that RA directly favors remodeling of mature 3T3-L1 adipocytes in culture toward increased oxidative metabolism.

Collaboration


Dive into the Josep M. Mercader's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Torrents

Barcelona Supercomputing Center

View shared research outputs
Top Co-Authors

Avatar

Sílvia Bonàs-Guarch

Barcelona Supercomputing Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wifredo Ricart

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Francisco Ortega

Instituto de Salud Carlos III

View shared research outputs
Researchain Logo
Decentralizing Knowledge