Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph A. Brzezinski is active.

Publication


Featured researches published by Joseph A. Brzezinski.


Development | 2010

Blimp1 controls photoreceptor versus bipolar cell fate choice during retinal development.

Joseph A. Brzezinski; Deepak A. Lamba; Thomas A. Reh

Photoreceptors, rods and cones are the most abundant cell type in the mammalian retina. However, the molecules that control their development are not fully understood. In studies of photoreceptor fate determination, we found that Blimp1 (Prdm1) is expressed transiently in developing photoreceptors. We analyzed the function of Blimp1 in the mouse retina using a conditional deletion approach. Developmental analysis of mutants showed that Otx2+ photoreceptor precursors ectopically express the bipolar cell markers Chx10 (Vsx2) and Vsx1, adopting bipolar instead of photoreceptor fate. However, this fate shift did not occur until the time when bipolar cells are normally specified during development. Most of the excess bipolar cells died around the time of bipolar cell maturation. Our results suggest that Blimp1 expression stabilizes immature photoreceptors by preventing bipolar cell induction. We conclude that Blimp1 regulates the decision between photoreceptor and bipolar cell fates in the Otx2+ cell population during retinal development.


Developmental Biology | 2012

Math5 defines the ganglion cell competence state in a subpopulation of retinal progenitor cells exiting the cell cycle

Joseph A. Brzezinski; Lev Prasov; Tom Glaser

The basic helix-loop-helix (bHLH) transcription factor Math5 (Atoh7) is transiently expressed during early retinal histogenesis and is necessary for retinal ganglion cell (RGC) development. Using nucleoside pulse-chase experiments and clonal analysis, we determined that progenitor cells activate Math5 during or after the terminal division, with progressively later onset as histogenesis proceeds. We have traced the lineage of Math5+ cells using mouse BAC transgenes that express Cre recombinase under strict regulatory control. Quantitative analysis showed that Math5+ progenitors express equivalent levels of Math5 and contribute to every major cell type in the adult retina, but are heavily skewed toward early fates. The Math5>Cre transgene labels 3% of cells in adult retina, including 55% of RGCs. Only 11% of Math5+ progenitors develop into RGCs; the majority become photoreceptors. The fate bias of the Math5 cohort, inferred from the ratio of cone and rod births, changes over time, in parallel with the remaining neurogenic population. Comparable results were obtained using Math5 mutant mice, except that ganglion cells were essentially absent, and late fates were overrepresented within the lineage. We identified Math5-independent RGC precursors in the earliest born (embryonic day 11) retinal cohort, but these precursors require Math5-expressing cells for differentiation. Math5 thus acts permissively to establish RGC competence within a subset of progenitors, but is not sufficient for fate specification. It does not autonomously promote or suppress the determination of non-RGC fates. These data are consistent with progressive and temporal restriction models for retinal neurogenesis, in which environmental factors influence the final histotypic choice.


Development | 2011

Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina

Joseph A. Brzezinski; Euiseok J. Kim; Jane E. Johnson; Thomas A. Reh

The mechanisms of cell fate diversification in the retina are not fully understood. The seven principal cell types of the neural retina derive from a population of multipotent progenitors during development. These progenitors give rise to multiple cell types concurrently, suggesting that progenitors are a heterogeneous population. It is thought that differences in progenitor gene expression are responsible for differences in progenitor competence (i.e. potential) and, subsequently, fate diversification. To elucidate further the mechanisms of fate diversification, we assayed the expression of three transcription factors made by retinal progenitors: Ascl1 (Mash1), Ngn2 (Neurog2) and Olig2. We observed that progenitors were heterogeneous, expressing every possible combination of these transcription factors. To determine whether this progenitor heterogeneity correlated with different cell fate outcomes, we conducted Ascl1- and Ngn2-inducible expression fate mapping using the CreER™/LoxP system. We found that these two factors gave rise to markedly different distributions of cells. The Ngn2 lineage comprised all cell types, but retinal ganglion cells (RGCs) were exceedingly rare in the Ascl1 lineage. We next determined whether Ascl1 prevented RGC development. Ascl1-null mice had normal numbers of RGCs and, interestingly, we observed that a subset of Ascl1+ cells could give rise to cells expressing Math5 (Atoh7), a transcription factor required for RGC competence. Our results link progenitor heterogeneity to different fate outcomes. We show that Ascl1 expression defines a competence-restricted progenitor lineage in the retina, providing a new mechanism to explain fate diversification.


Molecular and Cellular Neuroscience | 2008

Math5 expression and function in the central auditory system

Sara M. Saul; Joseph A. Brzezinski; Richard A. Altschuler; Susan E. Shore; Dellaney D. Rudolph; Lisa L. Kabara; Karin Halsey; Robert B. Hufnagel; Jianxun Zhou; David F. Dolan; Tom Glaser

Abstract The basic helix–loop–helix (bHLH) transcription factor Math5 (Atoh7) is required for retinal ganglion cell (RGC) and optic nerve development. Using Math5-lacZ knockout mice, we have identified an additional expression domain for Math5 outside the eye, in functionally connected structures of the central auditory system. In the adult hindbrain, the cytoplasmic Math5-lacZ reporter is expressed within the ventral cochlear nucleus (VCN), in a subpopulation of neurons that project to medial nucleus of the trapezoid body (MNTB), lateral superior olive (LSO), and lateral lemniscus (LL). These cells were identified as globular and small spherical bushy cells based on their morphology, abundance, distribution within the cochlear nucleus (CN), co-expression of Kv1.1, Kv3.1b and Kcnq4 potassium channels, and projection patterns within the auditory brainstem. Math5-lacZ is also expressed by cochlear root neurons in the auditory nerve. During embryonic development, Math5-lacZ was detected in precursor cells emerging from the caudal rhombic lip from embryonic day (E)12 onwards, consistent with the time course of CN neurogenesis. These cells co-express MafB and are post-mitotic. Math5 expression in the CN was verified by mRNA in situ hybridization, and the identity of positive neurons was confirmed morphologically using a Math5-Cre BAC transgene with an alkaline phosphatase reporter. The hindbrains of Math5 mutants appear grossly normal, with the exception of the CN. Although overall CN dimensions are unchanged, the lacZ-positive cells are significantly smaller in Math5 −/− mice compared to Math5 +/− mice, suggesting these neurons may function abnormally. The auditory brainstem response (ABR) of Math5 mutants was evaluated in a BALB/cJ congenic background. ABR thresholds of Math5 −/− mice were similar to those of wild-type and heterozygous mice, but the interpeak latencies for Peaks II–IV were significantly altered. These temporal changes are consistent with a higher-level auditory processing disorder involving the CN, potentially affecting the integration of binaural sensory information.


Development | 2015

Photoreceptor cell fate specification in vertebrates.

Joseph A. Brzezinski; Thomas A. Reh

Photoreceptors – the light-sensitive cells in the vertebrate retina – have been extremely well-characterized with regards to their biochemistry, cell biology and physiology. They therefore provide an excellent model for exploring the factors and mechanisms that drive neural progenitors into a differentiated cell fate in the nervous system. As a result, great progress in understanding the transcriptional network that controls photoreceptor specification and differentiation has been made over the last 20 years. This progress has also enabled the production of photoreceptors from pluripotent stem cells, thereby aiding the development of regenerative medical approaches to eye disease. In this Review, we outline the signaling and transcription factors that drive vertebrate photoreceptor development and discuss how these function together in gene regulatory networks to control photoreceptor cell fate specification. Summary: This Review discusses recent progress in the understanding of the mechanisms of photoreceptor specification from neural progenitors and their implications for the treatment of retinal diseases.


Epigenetics & Chromatin | 2015

DNase I hypersensitivity analysis of the mouse brain and retina identifies region-specific regulatory elements

Matthew S. Wilken; Joseph A. Brzezinski; Anna La Torre; Kyle Siebenthall; Robert E. Thurman; Peter J. Sabo; Richard Sandstrom; Jeff Vierstra; Theresa K. Canfield; R. Scott Hansen; Michael Bender; John A. Stamatoyannopoulos; Thomas A. Reh

BackgroundThe brain, spinal cord, and neural retina comprise the central nervous system (CNS) of vertebrates. Understanding the regulatory mechanisms that underlie the enormous cell-type diversity of the CNS is a significant challenge. Whole-genome mapping of DNase I-hypersensitive sites (DHSs) has been used to identify cis-regulatory elements in many tissues. We have applied this approach to the mouse CNS, including developing and mature neural retina, whole brain, and two well-characterized brain regions, the cerebellum and the cerebral cortex.ResultsFor the various regions and developmental stages of the CNS that we analyzed, there were approximately the same number of DHSs; however, there were many DHSs unique to each CNS region and developmental stage. Many of the DHSs are likely to mark enhancers that are specific to the specific CNS region and developmental stage. We validated the DNase I mapping approach for identification of CNS enhancers using the existing VISTA Browser database and with in vivo and in vitro electroporation of the retina. Analysis of transcription factor consensus sites within the DHSs shows distinct region-specific profiles of transcriptional regulators particular to each region. Clustering developmentally dynamic DHSs in the retina revealed enrichment of developmental stage-specific transcriptional regulators. Additionally, we found reporter gene activity in the retina driven from several previously uncharacterized regulatory elements surrounding the neurodevelopmental gene Otx2. Identification of DHSs shared between mouse and human showed region-specific differences in the evolution of cis-regulatory elements.ConclusionsOverall, our results demonstrate the potential of genome-wide DNase I mapping to cis-regulatory questions regarding the regional diversity within the CNS. These data represent an extensive catalogue of potential cis-regulatory elements within the CNS that display region and temporal specificity, as well as a set of DHSs common to CNS tissues. Further examination of evolutionary conservation of DHSs between CNS regions and different species may reveal important cis-regulatory elements in the evolution of the mammalian CNS.


Developmental Biology | 2013

Blimp1 (Prdm1) prevents re-specification of photoreceptors into retinal bipolar cells by restricting competence

Joseph A. Brzezinski; Ko Uoon Park; Thomas A. Reh

During retinal development, photoreceptors and bipolar cells express the transcription factor Otx2. Blimp1 is transiently expressed in Otx2+ cells. Blimp1 deletion results in excess bipolar cell formation at the expense of photoreceptors. In principle, Blimp1 could be expressed only in Otx2+ cells that are committed to photoreceptor fate. Alternatively, Blimp1 could be expressed broadly in Otx2+ cells and silenced to allow bipolar cell development. To distinguish between these alternatives, we followed the fate of Blimp1 expressing cells using Blimp1-Cre mice and Lox-Stop-Lox reporter strains. We observed that Blimp1+ cells gave rise to all photoreceptors, but also to one third of bipolar cells, consistent with the latter alternative: that Blimp1 inhibits bipolar competence in Otx2+ cells and must be silenced to allow bipolar cell generation. To further test this hypothesis, we looked for transitioning rod photoreceptors in Blimp1 conditional knock-out (CKO) mice carrying the NRL-GFP transgene, which specifically labels rods. Control animals lacked NRL-GFP+ bipolar cells. In contrast, about half of the precociously generated bipolar cells in Blimp1 CKO mice co-expressed GFP, suggesting that rods become re-specified as bipolar cells. Birthdating analyses in control and Blimp1 CKO mice showed that bipolar cells were birthdated as early as E13.5 in Blimp1 CKO mice, five days before this cell type was generated in the wild-type retina. Taken together, our data suggest that early Otx2+ cells upregulate photoreceptor and bipolar genes, existing in a bistable state. Blimp1 likely forms a cross-repressive network with pro-bipolar factors such that the winner of this interaction stabilizes the photoreceptor or bipolar state, respectively.


Human Molecular Genetics | 2014

Prdm1 functions in the mesoderm of the second heart field, where it interacts genetically with Tbx1, during outflow tract morphogenesis in the mouse embryo

Stéphane D. Vincent; Alicia Mayeuf-Louchart; Yusuke Watanabe; Joseph A. Brzezinski; Sachiko Miyagawa-Tomita; Robert G. Kelly; Margaret Buckingham

Congenital heart defects affect at least 0.8% of newborn children and are a major cause of lethality prior to birth. Malformations of the arterial pole are particularly frequent. The myocardium at the base of the pulmonary trunk and aorta and the arterial tree associated with these great arteries are derived from splanchnic mesoderm of the second heart field (SHF), an important source of cardiac progenitor cells. These cells are controlled by a gene regulatory network that includes Fgf8, Fgf10 and Tbx1. Prdm1 encodes a transcriptional repressor that we show is also expressed in the SHF. In mouse embryos, mutation of Prdm1 affects branchial arch development and leads to persistent truncus arteriosus (PTA), indicative of neural crest dysfunction. Using conditional mutants, we show that this is not due to a direct function of Prdm1 in neural crest cells. Mutation of Prdm1 in the SHF does not result in PTA, but leads to arterial pole defects, characterized by mis-alignment or reduction of the aorta and pulmonary trunk, and abnormalities in the arterial tree, defects that are preceded by a reduction in outflow tract size and loss of caudal pharyngeal arch arteries. These defects are associated with a reduction in proliferation of progenitor cells in the SHF. We have investigated genetic interactions with Fgf8 and Tbx1, and show that on a Tbx1 heterozygote background, conditional Prdm1 mutants have more pronounced arterial pole defects, now including PTA. Our results identify PRDM1 as a potential modifier of phenotypic severity in TBX1 haploinsufficient DiGeorge syndrome patients.


Molecular and Cellular Neuroscience | 2013

Heterochronic misexpression of Ascl1 in the Atoh7 retinal cell lineage blocks cell cycle exit.

Robert B. Hufnagel; Amy N. Riesenberg; Malgorzata E. Quinn; Joseph A. Brzezinski; Tom Glaser; Nadean L. Brown

Retinal neurons and glia arise from a common progenitor pool in a temporal order, with retinal ganglion cells (RGCs) appearing first, and Müller glia last. The transcription factors Atoh7/Math5 and Ascl1/Mash1 represent divergent bHLH clades, and exhibit distinct spatial and temporal retinal expression patterns, with little overlap during early development. Here, we tested the ability of Ascl1 to change the fate of cells in the Atoh7 lineage when misexpressed from the Atoh7 locus, using an Ascl1-IRES-DsRed2 knock-in allele. In Atoh7(Ascl1KI/+) and Atoh7(Ascl1KI/Ascl1KI) embryos, ectopic Ascl1 delayed cell cycle exit and differentiation, even in cells coexpressing Atoh7. The heterozygous retinas recovered, and eventually produced a normal complement of RGCs, while homozygous substitution of Ascl1 for Atoh7 did not promote postnatal retinal fates precociously, nor rescue Atoh7 mutant phenotypes. However, our analyses revealed two unexpected findings. First, ectopic Ascl1 disrupted cell cycle progression within the marked Atoh7 lineage, but also nonautonomously in other retinal cells. Second, the size of the Atoh7 retinal lineage was unaffected, supporting the idea of a compensatory shift of the non-proliferative cohort to maintain lineage size. Overall, we conclude that Ascl1 acts dominantly to block cell cycle exit, but is incapable of redirecting the fates of early RPCs.


PLOS ONE | 2017

Combinatorial regulation of a Blimp1 (Prdm1) enhancer in the mouse retina

Taylor S. Mills; Tatiana Eliseeva; Stephanie M. Bersie; Grace Randazzo; Jhenya Nahreini; Ko Uoon Park; Joseph A. Brzezinski

The mouse retina comprises seven major cell types that exist in differing proportions. They are generated from multipotent progenitors in a stochastic manner, such that the relative frequency of any given type generated changes over time. The mechanisms determining the proportions of each cell type are only partially understood. Photoreceptors and bipolar interneurons are derived from cells that express Otx2. Within this population, Blimp1 (Prdm1) helps set the balance between photoreceptors and bipolar cells by suppressing bipolar identity in most of the cells. How only a subset of these Otx2+ cells decides to upregulate Blimp1 and adopt photoreceptor fate is unknown. To understand this, we investigated how Blimp1 transcription is regulated. We identified several potential Blimp1 retinal enhancer elements using DNase hypersensitivity sequencing. Only one of the elements recapitulated Blimp1 spatial and temporal expression in cultured explant assays and within the retinas of transgenic mice. Mutagenesis of this retinal Blimp1 enhancer element revealed four discrete sequences that were each required for its activity. These included highly conserved Otx2 and ROR (retinoic acid receptor related orphan receptor) binding sites. The other required sequences do not appear to be controlled by Otx2 or ROR factors, increasing the complexity of the Blimp1 gene regulatory network. Our results show that the intersection of three or more transcription factors is required to correctly regulate the spatial and temporal features of Blimp1 enhancer expression. This explains how Blimp1 expression can diverge from Otx2 and set the balance between photoreceptor and bipolar fates.

Collaboration


Dive into the Joseph A. Brzezinski's collaboration.

Top Co-Authors

Avatar

Tom Glaser

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Thomas A. Reh

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Ko Uoon Park

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Grace Randazzo

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Jane E. Johnson

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ko Park

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Nadean L. Brown

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tatiana Eliseeva

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge