Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph A. Demaro is active.

Publication


Featured researches published by Joseph A. Demaro.


Journal of Clinical Investigation | 1998

Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury.

Yu Cheng; Mohanish Deshmukh; Anselm D'Costa; Joseph A. Demaro; Jeffrey M. Gidday; Aarti R. Shah; Yuling Sun; Mark F. Jacquin; Eugene M. Johnson; David M. Holtzman

Programmed cell death (apoptosis) is a normal process in the developing nervous system. Recent data suggest that certain features seen in the process of programmed cell death may be favored in the developing versus the adult brain in response to different brain injuries. In a well characterized model of neonatal hypoxia-ischemia, we demonstrate marked but delayed cell death in which there is prominent DNA laddering, TUNEL-labeling, and nuclei with condensed chromatin. Caspase activation, which is required in many cases of apoptotic cell death, also followed a delayed time course after hypoxia-ischemia. Administration of boc-aspartyl(OMe)-fluoromethylketone, a pan-caspase inhibitor, was significantly neuroprotective when given by intracerebroventricular injection 3 h after cerebral hypoxia-ischemia. In addition, systemic injections of boc-aspartyl(OMe)-fluoromethylketone also given in a delayed fashion, resulted in significant neuroprotection. These findings suggest that caspase inhibitors may be able to provide benefit over a prolonged therapeutic window after hypoxic-ischemic events in the developing brain, a major contributor to static encephalopathy and cerebral palsy.


Experimental Neurology | 1999

Expression of Neurturin, GDNF, and GDNF Family-Receptor mRNA in the Developing and Mature Mouse

Judith P. Golden; Joseph A. Demaro; Patricia A. Osborne; Jeffrey Milbrandt; Eugene M. Johnson

The GDNF family of neurotrophic factors currently has four members: neurturin (NRTN), glial cell line-derived neurotrophic factor (GDNF), persephin, and artemin. These proteins are potent survival factors for several populations of central and peripheral neurons. The receptors for these factors are complexes that include the Ret tyrosine kinase receptor and a GPI-linked, ligand-binding component called GDNF family receptor alpha 1-4 (GFRalpha1-4). We have used in situ hybridization to study the mRNA expression of NRTN, GDNF, Ret, GFRalpha1, and GFRalpha2 during embryonic development and in the adult mouse. GDNF receptors were prominently expressed during embryonic development in the nervous system, the urogenital system, the digestive system, the respiratory system, and in developing skin, bone, muscle, and endocrine glands. In some regions, incomplete receptor complexes were expressed suggesting that other, as yet unidentified, receptor components exist or that receptor complexes are formed in trans. NRTN and GDNF were expressed in many trigeminal targets during embryonic development including the nasal epithelium, the teeth, and the whisker follicles. NRTN and GDNF were also expressed in the developing limbs and urogenital system. In the embryo, GDNF factors and receptors were expressed at several sites of mesenchyme/epithelial induction, including the kidney, tooth, and submandibular gland. This expression pattern is consistent with the possibility that the GDNF factors function in inductive processes during embryonic development and with the recently discovered role of NRTN as a necessary trophic factor for the development of some parasympathetic neurons. In the mature animal, receptor expression was more limited than in the embryo. In the adult mouse, NRTN was most prominently expressed in the gut, prostate testicle, and oviduct; GDNF was most prominently expressed in the ovary.


Experimental Neurology | 1995

Staurosporine-induced neuronal apoptosis

Jae-Young Koh; Myung Bok Wie; Byoung Joo Gwag; Stefano L. Sensi; Lorella M.T. Canzoniero; Joseph A. Demaro; Cynthia A. Csernansky; Dennis W. Choi

Staurosporine, a nonselective protein kinase inhibitor, has been shown to induce apoptosis in several different nonneuronal cell types. We tested the hypothesis that staurosporine would also induce apoptosis in central neurons. Exposure of murine cortical cell cultures to 30-100 nM staurosporine induced concentration-dependent selective neuronal degeneration over the following day; at higher concentrations, staurosporine damaged glial cells as well. Staurosporine-induced neuronal death was accompanied by cell body shrinkage, chromatin condensation, and DNA laddering. In contrast, NMDA-induced neuronal death was accompanied by acute cell body swelling without DNA laddering. Staurosporine-induced neuronal death, unlike excitotoxic death, was markedly attenuated by the protein synthesis inhibitor cycloheximide; this protective effect was not reversed by a glutathione synthesis inhibitor, buthionine sulfoximine. Interestingly, the glial cell death induced by 1 microM staurosporine was markedly potentiated by cycloheximide. Staurosporine-induced neuronal death was not accompanied by an increase in intracellular free Ca2+ and was attenuated by 30 mM K+; this protective effect of high K+ was blocked by nimodipine or Co2+. Present data suggest that staurosporine can induce apoptosis in cultured cortical neurons and that this apoptosis can be blocked by raising intracellular Ca2+ or by blocking protein synthesis. Staurosporine exposure may be useful as a model for studying central neuronal apoptosis in vitro.


Neuroscience | 1997

Slowly triggered excitotoxicity occurs by necrosis in cortical cultures

Byoung Joo Gwag; Jae-Young Koh; Joseph A. Demaro; Howard S. Ying; Mark F. Jacquin; Dennis W. Choi

This study examined the possibility that the excitotoxin-induced death of cultured cortical neurons might occur by apoptosis, specifically focusing on the slowly triggered death induced by low concentrations of excitotoxin. Cultured murine cortical neurons (days in vitro 10-12) were exposed continuously to N-methyl-D-aspartate (10-15 microM), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (3-100 microM) or kainate (30-60 microM) over 24 h. Within 2 h of exposure onset, neuronal cell body swelling was visible under phase-contrast optics. At this point, transmission electron microscopy revealed disruption of cell membranes and organelles, mitochondrial swelling and scattered chromatin condensation at the periphery of nuclei. By 8 h after exposure onset, many neurons were devoid of cytoplasmic structures, but nuclear membranes remained relatively intact. This excitotoxic degeneration was not blocked by the protein synthesis inhibitor, cycloheximide, or the growth factors, brain-derived neurotrophic factor or insulin-like growth factor-1, agents that did block serum deprivation-induced apoptosis death in other cultures. DNA agarose gel electrophoresis, however, revealed the transient occurrence of internucleosomal DNA fragmentation, appearing 4-8 h after exposure onset, but absent 24 h after exposure onset. The present results suggest that even slowly triggered excitotoxicity occurs by necrosis, and raise a cautionary note in interpreting internucleosomal DNA fragmentation in isolation as evidence for apoptosis.


Neuroscience | 1999

Calcium ionophores can induce either apoptosis or necrosis in cultured cortical neurons

B.J. Gwag; Lorella M.T. Canzoniero; Stefano L. Sensi; Joseph A. Demaro; Jae-Young Koh; Mark P. Goldberg; Mark F. Jacquin; Dennis W. Choi

Cultured cortical neurons exposed for 24 h to low concentrations of the Ca2+ ionophores, ionomycin (250 nM) or A-23187 (100 nM), underwent apoptosis, accompanied by early degeneration of neurites, cell body shrinkage, chromatin condensation and internucleosomal DNA fragmentation. This death could be blocked by protein synthesis inhibitors, as well as by the growth factors brain-derived neurotrophic factor or insulin-like growth factor I. If the ionomycin concentration was increased to 1-3 microM, then neurons underwent necrosis, accompanied by early cell body swelling without DNA laddering, or sensitivity to cycloheximide or growth factors. Calcium imaging with Fura-2 suggested a possible basis for the differential effects of low and high concentrations of ionomycin. At low concentrations, ionomycin induced greater increases in intracellular Ca2+ concentration in neurites than in neuronal cell bodies, whereas at high concentrations, ionomycin produced large increases in intracellular Ca2+ concentration in both neurites and cell bodies. We hypothesize that the ability of low concentrations of Ca2+ ionophores to raise intracellular Ca2+ concentration preferentially in neurites caused early neurite degeneration, leading to loss of growth factor availability to the cell body and consequent apoptosis, whereas high concentrations of ionophores produced global cellular Ca2+ overload and consequent necrosis.


Stroke | 1997

Cell Death Suggestive of Apoptosis After Spinal Cord Ischemia in Rabbits

Mary E. Mackey; Yingji Wu; Rong Hu; Joseph A. Demaro; Mark F. Jacquin; Georgios K. Kanellopoulos; Chung Y. Hsu; Nicholas T. Kouchoukos

BACKGROUND AND PURPOSE After spinal cord ischemia, some neurons remain viable after an ischemic insult but may be at risk of dying during reperfusion. We searched for morphological and biochemical features of apoptosis, which is a mechanism of delayed neuronal death, in a rabbit model of spinal cord ischemia. METHODS The infrarenal aorta of White New Zealand rabbits (n = 24) was occluded for 40 minutes using a loop tourniquet. Rabbits were killed after 12, 24, or 48 hours (n = 8 per group). The loop was placed but never tightened in sham-operated rabbits (n = 6). The lumbar segment of the spinal cord (L5 to L7) was used for morphological studies, including hematoxylin and eosin staining and a modified terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end-labeling (TUNEL) staining method. Electron microscopy was used to examine ultrastructural morphology. In addition, lumbar tissue was used for biochemical investigation of DNA laddering by agarose gel electrophoresis. RESULTS After ischemia, the affected areas contained neurons with positive TUNEL staining. Positive neurons were located in laminae III to IX, although most were concentrated in the intermediate and ventral areas. Adjacent sections stained with hematoxylin and eosin exhibited ischemic cell changes (red and ghost neurons), while apoptotic bodies were also apparent. In addition, electron microscopy of ischemic tissue samples exhibited ultrastructural characteristics of apoptosis, including nuclear condensation and relatively normal organelle morphology. Finally, isolated DNA revealed a ladder on agarose gel electrophoresis, indicating DNA fragmentation into approximately 180 multiples of base pairs. CONCLUSIONS Spinal cord ischemia in rabbits induces morphological and biochemical changes suggestive of apoptosis. These data raise the possibility that apoptosis contributes to neuronal cell death after spinal cord ischemia.


The Journal of Comparative Neurology | 1996

Peripheral and Central Predictors of Whisker Afferent Morphology in the Rat Brainstem

Peter J. Shortland; Joseph A. Demaro; Fei Shang; Phil M.E. Waite; Mark F. Jacquin

Prior studies suggest that whisker afferents have but one central projection pattern, despite their association with differing peripheral receptors that predict central morphology in other systems. Target factors in barrelettes are thought to dictate afferent projection patterns; yet, barrelettes differ in their size, shape and development. We tested the hypothesis that whisker afferents have differing morphologies that are predicted by peripheral and central factors. Branching patterns and collaterals of 78 Neurobiotin‐stained afferents were compared in rats. Fibers from one whisker had precisely somatotopic projections but highly varied morphologies. For the entire sample, analysis of variance revealed significant intrafiber variance in collateral number and arbor shape that was attributed to the target subnucleus. Significant interfiber variance did not reflect response adaptation rate, direction sensitivity, whisker row origin or parent fiber bifurcation in the trigeminal root. Instead, we found the following. 1) Mandibular fibers had more elongated arbors than maxillary axons. In subnuclei interpolaris and principalis, mandibular fibers had larger arbors with more boutons/collateral than maxillary axons; in oralis and interpolaris, mandibular fibers had fewer collaterals than those of the maxillary division. 2) Upper lip whisker axons had more boutons than those from the B‐D row in all subnuclei. 3) Rostral whisker arc afferents had larger arbors and more boutons than those from middle or caudal arcs due to significant arc effects in interpolaris and oralis. Thus, whisker afferents are not structurally uniform, and some morphological features are predictable. Intrafiber variance is attributed to the central target; interfiber variance reflects maxillary versus mandibular origin, upper lip origin and whisker rostrocaudal arc.


Somatosensory and Motor Research | 1995

Trigeminal Structure-Function Relationships: A Reevaluation Based on Long-Range Staining of a Large Sample of Brainstem AP Fibers

Peter J. Shortland; Joseph A. Demaro; Mark F. Jacquin

Prior studies suggest that some classes of thickly myelinated (A beta) afferents have distinct morphologies in the trigeminal (V) brainstem complex, and that single fibers have collaterals with different shapes in the four V subnuclei. However, these conclusions are based upon relatively few and incompletely stained fibers and limited statistical rigor. In the present study, 104 fibers were stained more completely with neurobiotin in rats to provide within-fiber intersubnucleus comparisons, and between-fiber intrasubnucleus comparisons, of collaterals associated with a vibrissa, guard hairs, hairy skin, glabrous skin, or oral structures. Collaterals from all functional categories had similar qualitative features and were distributed somatotopically in the transverse plane according to known maps. Fiber categories were not disproportionately represented at particular sites along the brainstems rostrocaudal axis, although most fibers adhered to an onion-leaf topography in caudalis. Surprisingly few structure-function relationships were revealed by multivariate analysis of variance and post hoc group comparisons, as follows: Arbors were larger in caudalis than in any other subnucleus; collaterals were most numerous in interpolaris; vibrissa afferents had more collaterals than oral and guard hair afferents; and oral fibers had larger arbors than vibrissa or guard hair afferents in subnucleus oralis. Peripheral receptor association and response adaptation rate failed to predict arbor shapes and terminal bouton numbers in any V subnucleus. These data confirm that the locations of V primary afferent arbors are predicted by their receptive fields. However, collateral number and morphology are predicted only to a very limited extent by the V subnucleus and peripheral receptor affiliation--a conclusion that contrasts with those of most prior studies of somatosensory primary afferents.


Somatosensory and Motor Research | 1995

Central Projections of Identified Trigeminal Primary Afferents after Molar Pulp Deafferentation in Adult Rats

Peter J. Shortland; Mark F. Jacquin; Joseph A. Demaro; Chun L. Kwan; James W. Hu; Barry J. Sessle

It is known that removal of the tooth pulp from mandibular molar teeth in adult rats alters the mechanoreceptive field properties of many low-threshold mechanoreceptive neurons in the trigeminal brainstem nuclear complex. The present study investigates one possible way that such deafferentation-induced receptive field changes could occur: altered central projections of uninjured trigeminal low-threshold mechanoreceptive primary afferent fibers. Intra-axonal injection of horseradish peroxidase (n = 22) or neurobiotin (n = 44) into characterized fibers was performed ipsilateral to, and 10-32 days after, removal of the coronal pulp from the left mandibular molars in adult rats. Collaterals were reconstructed, quantified, and compared by means of multivariate analyses of variance to equivalent fibers stained in normal adult rats. Stained mechanosensitive fibers from experimental animals were rapidly conducting and responded to light mechanical stimulation of one vibrissa, one tooth, oral mucosa, facial hairy skin, or guard hairs. Their central projections were indistinguishable from those of control axons in all four trigeminal subnuclei. The numbers of collaterals, areas subtended by collateral arbors, numbers of boutons per collateral, and arbor circularity did not differ from those of control afferents. Collateral somatotopy was also unaffected. These data suggest that following pulpotomy, the central collaterals of uninjured trigeminal afferents display normal morphologies and maintain normal somatotopy. Changes in the morphology of low-threshold primary afferents cannot account for the changes that occur in the receptive field properties of trigeminal brainstem neurons after pulp deafferentation.


The Journal of Comparative Neurology | 1997

Development of terminals and synapses in laminae I and II of the rat medullary dorsal horn after infraorbital nerve transection at birth

Judith P. Golden; Joseph A. Demaro; Pamela L. Robinson; Mark F. Jacquin

Infraorbital nerve damage at birth kills neurons and alters anatomical, physiological, and biochemical properties of surviving cells in all portions of the trigeminal brainstem complex, with the exception of laminae I and II of the medullary dorsal horn. The resiliency of laminae I and II may be due to rapid terminal sprouting and reactive synaptogenesis in this region. To test this hypothesis, quantitative electron microscopy revealed the types and numbers of terminals, synapses, and degenerating and growth cone‐like profiles in the left laminae I and II at 1, 4, 17, and 90 days after left infraorbital nerve section. Control data were derived from normal newborns and from the right laminae I and II and the left infraorbital nerve of every experimental animal. Deafferented laminae I and II contained a median of 11.7, 8.2, 21.8, and 38.2 synapses/100 μm3 on days 1, 4, 17, and 90, respectively. At corresponding ages, there were 17.1, 19.4, 36.2, and 32 terminals; 14.4, 4.2, 5.1, and 0.3 degenerating profiles; and 4.6, 2.2, 0.1, and 0 growth cone‐like profiles/100 μm2. Significant differences from the control right side are: 1) The percentage area occupied by terminals is less on days 1 and 17; 2) terminal density does not increase from day 0 to day 4 as it does on the control side; 3) the density of degenerating profiles is higher on day 17; 4) growth cones are less dense on days 4 and 17; and 5) synapse density is lower on days 1 and 4. Axon number in the infraorbital nerve was highly predictive of terminal and synapse densities in deafferented laminae I and II at all ages.

Collaboration


Dive into the Joseph A. Demaro's collaboration.

Top Co-Authors

Avatar

Mark F. Jacquin

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Dennis W. Choi

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jae-Young Koh

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Judith P. Golden

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Peter J. Shortland

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byoung Joo Gwag

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Eugene M. Johnson

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge