Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph A. Ludwig is active.

Publication


Featured researches published by Joseph A. Ludwig.


Cancer Research | 2006

Selective Toxicity of NSC73306 in MDR1-Positive Cells as a New Strategy to Circumvent Multidrug Resistance in Cancer

Joseph A. Ludwig; Gergely Szakács; Scott E. Martin; Benjamin F. Chu; Carol O. Cardarelli; Zuben E. Sauna; Natasha J. Caplen; Henry M. Fales; Suresh V. Ambudkar; John N. Weinstein; Michael M. Gottesman

ATP-binding cassette (ABC) proteins include the best known mediators of resistance to anticancer drugs. In particular, ABCB1 [MDR1/P-glycoprotein (P-gp)] extrudes many types of drugs from cancer cells, thereby conferring resistance to those agents. Attempts to overcome P-gp-mediated drug resistance using specific inhibitors of P-gp has had limited success and has faced many therapeutic challenges. As an alternative approach to using P-gp inhibitors, we characterize a thiosemicarbazone derivative (NSC73306) identified in a generic screen as a compound that exploits, rather than suppresses, P-gp function to induce cytotoxicity. Cytotoxic activity of NSC73306 was evaluated in vitro using human epidermoid, ovarian, and colon cancer cell lines expressing various levels of P-gp. Our findings suggest that cells become hypersensitive to NSC73306 in proportion to the increased P-gp function and multidrug resistance (MDR). Abrogation of both sensitivity to NSC73306 and resistance to P-gp substrate anticancer agents occurred with specific inhibition of P-gp function using either a P-gp inhibitor (PSC833, XR9576) or RNA interference, suggesting that cytotoxicity was linked to MDR1 function, not to other, nonspecific factors arising during the generation of resistant or transfected cells. Molecular characterization of cells selected for resistance to NSC73306 revealed loss of P-gp expression and consequent loss of the MDR phenotype. Although hypersensitivity to NSC73306 required functional expression of P-gp, biochemical assays revealed no direct interaction between NSC73306 and P-gp. This article shows that NSC73306 kills cells with intrinsic or acquired P-gp-induced MDR and indirectly acts to eliminate resistance to MDR1 substrates.


Clinical Cancer Research | 2012

Insulin Growth Factor-Receptor (IGF-1R) Antibody Cixutumumab Combined with the mTOR Inhibitor Temsirolimus in Patients with Refractory Ewing's Sarcoma Family Tumors

Aung Naing; Patricia LoRusso; Siqing Fu; David S. Hong; Pete Anderson; Robert S. Benjamin; Joseph A. Ludwig; Helen X. Chen; Laurence A. Doyle; Razelle Kurzrock

Purpose: Temsirolimus was combined with cixutumumab, a fully human IgG1 monoclonal antibody directed at the insulin growth factor-1 receptor (IGF-1R). Experimental Design: Patients received cixutumumab, 6 mg/kg i.v. weekly, and temsirolimus, 25 to 37.5 mg i.v. weekly (4-week cycles), with restaging after 8 weeks. Median follow-up was 8.9 months. Results: Twenty patients [17 with Ewings sarcoma (EWS), 3 with desmoplastic small-round cell tumor (DSRCT)] were enrolled. Twelve patients (60%) were men with a median age of 24 years and six median prior systemic therapies in a metastatic setting. The most frequent toxicities were thrombocytopenia (85%), mucositis (80%), hypercholesterolemia (75%), hypertriglyceridemia (70%), and hyperglycemia (65%; mostly grade I–II). Seven of 20 patients (35%) achieved stable disease (SD) for more than 5 months or complete/partial (CR/PR) responses. Tumor regression of more than 20% (23%, 23%, 27%, 100%, 100%) occurred in five of 17 (29%) patients with EWS, and they remained on study for 8 to 27 months. One of six patients with EWS who previously developed resistance to a different IGF-1R inhibitor antibody achieved a CR. Four of the seven best responders developed grade III mucositis, myelosuppression, or hyperglycemia, which were controlled while maintaining drug dose. Conclusion: Cixutumumab combined with temsirolimus was well-tolerated and showed preliminary evidence of durable antitumor activity in heavily pretreated EWS family tumors. Clin Cancer Res; 18(9); 2625–31. ©2012 AACR.


Osteoporosis International | 2010

Of mice and men: divergent risks of teriparatide-induced osteosarcoma

Vivek Subbiah; V. S. Madsen; A. K. Raymond; Robert S. Benjamin; Joseph A. Ludwig

SummarySince approval by the U.S. Food and Drug Administration (FDA) in December 2002, teriparatide (recombinant 1-34 PTH; Forteo®) has been safely used by more than 430,000 patients. Prior to FDA approval, however, there was concern that teriparatide might increase the risk for patients to develop osteosarcoma, as almost 45% of the rats treated with this drug at the highest-tested dose level developed this aggressive form of bone cancer. Balancing the proven benefits of teriparatide shown by clinical trials with the theoretical risk for teriparatide-induced human osteosarcoma, the FDA mandated both a ‘black-box’ warning of this potential side-effect and a company-sponsored postmarketing surveillance program. As a participating institute of that surveillance program, we report upon the second person with potential teriparatide-induced osteosarcoma, in this case, complicated by a history of pelvic radiation.IntroductionGiven the theoretic risk of the drug teriparatide and the known risk of radiation in inducing osteosarcoma, we raise the issue of whether teriparatide magnified the risk of radiation-induced osteosarcoma in our patient and try to determine which factor played the predominant role in the development of his disease.MethodsWe analyzed preclinical rat data, human clinical experience with teriparatide, and our patient’s clinical history to assess the human risk of teriparatide and radiation exposure.ResultsAfter the first case of suspected osteosarcoma was reported in December 2005, we encountered a second possible teriparatide-induced osteosarcoma less than a year later. Review of the preclinical animal data would suggest that teriparatide is safe for human use when used as recommended by the manufacturer. Given the location of the sarcoma within the field of radiation and the limited exposure to teriparatide before diagnosis, it is unlikely that teriparatide played the predominant role in the emergence of this patient’s osteosarcoma. We cannot, however, exclude the possibility that teriparatide magnified the carcinogenic effect of radiation therapy to induce the osteosarcoma.ConclusionOf more than 430,000 persons who have received teriparatide for treatment of severe osteoporosis, we report the second patient to develop osteosarcoma. Although teriparatide reduces osteoporosis-related fractures in select patient populations, important contraindications, such as prior radiation exposure, should be considered before use.


Journal of Medicinal Chemistry | 2009

Synthesis, Activity, and Pharmacophore Development for Isatin-β-thiosemicarbazones with Selective Activity toward Multidrug-Resistant Cells

Matthew D. Hall; Noeris K. Salam; Jennifer L. Hellawell; Henry M. Fales; Caroline B. Kensler; Joseph A. Ludwig; Gergely Szakács; David E. Hibbs; Michael M. Gottesman

We have recently identified a new class of compounds that selectively kill cells that express P-glycoprotein (P-gp, MDR1), the ATPase efflux pump that confers multidrug resistance on cancer cells. Several isatin-beta-thiosemicarbazones from our initial study have been validated and a range of analogues synthesized and tested. A number demonstrated improved MDR1-selective activity over the lead, NSC73306 (1). Pharmacophores for cytotoxicity and MDR1 selectivity were generated to delineate the structural features required for activity. The MDR1-selective pharmacophore highlights the importance of aromatic/hydrophobic features at the N4 position of the thiosemicarbazone and the reliance on the isatin moiety as key bioisosteric contributors. Additionally, a quantitative structure-activity relationship (QSAR) model that yielded a cross-validated correlation coefficient of 0.85 effectively predicts the cytotoxicity of untested thiosemicarbazones. Together, the models serve as effective approaches for predicting structures with MDR1-selective activity and aid in directing the search for the mechanism of action of 1.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Modeling Ewing sarcoma tumors in vitro with 3D scaffolds

Eliza Li Shan Fong; Salah Eddine Lamhamedi-Cherradi; Emily Burdett; Vandhana Ramamoorthy; Alexander J. Lazar; F. Kurtis Kasper; Mary C. Farach-Carson; Deeksha Vishwamitra; Elizabeth G. Demicco; Brian A. Menegaz; Hesham M. Amin; Antonios G. Mikos; Joseph A. Ludwig

The pronounced biological influence of the tumor microenvironment on cancer progression and metastasis has gained increased recognition over the past decade, yet most preclinical antineoplastic drug testing is still reliant on conventional 2D cell culture systems. Although monolayer cultures recapitulate some of the phenotypic traits observed clinically, they are limited in their ability to model the full range of microenvironmental cues, such as ones elicited by 3D cell–cell and cell–extracellular matrix interactions. To address these shortcomings, we established an ex vivo 3D Ewing sarcoma model that closely mimics the morphology, growth kinetics, and protein expression profile of human tumors. We observed that Ewing sarcoma cells cultured in porous 3D electrospun poly(ε-caprolactone) scaffolds not only were more resistant to traditional cytotoxic drugs than were cells in 2D monolayer culture but also exhibited remarkable differences in the expression pattern of the insulin-like growth factor-1 receptor/mammalian target of rapamycin pathway. This 3D model of the bone microenvironment may have broad applicability for mechanistic studies of bone sarcomas and exhibits the potential to augment preclinical evaluation of antineoplastic drug candidates for these malignancies.


Lancet Oncology | 2013

Cixutumumab and temsirolimus for patients with bone and soft-tissue sarcoma: a multicentre, open-label, phase 2 trial

Gary K. Schwartz; William D. Tap; Li Xuan Qin; Michael B. Livingston; Samir D. Undevia; Bartosz Chmielowski; Mark Agulnik; Scott M. Schuetze; Damon R. Reed; Scott H. Okuno; Joseph A. Ludwig; Vicki L. Keedy; Petra Rietschel; Andrew S. Kraft; Douglas Adkins; Brian A. Van Tine; Bruce Brockstein; Vincent Yim; Christiana Bitas; Abdul Karim Abdullah; Cristina R. Antonescu; Mercedes M. Condy; Mark A. Dickson; Shyamprasad Deraje Vasudeva; Alan L. Ho; L. Austin Doyle; Helen X. Chen; Robert G. Maki

BACKGROUND Preclinical studies have shown synergistic antitumour activity by inhibition of insulin-like growth factor-1 receptor (IGF-1R) and mTOR. The expression of IGF-1R seems to be crucial for this effect. We investigated the safety and efficacy of the combination of the IGF-1R antibody cixutumumab and the mTOR inhibitor temsirolimus in patients with chemotherapy-refractory bone and soft-tissue sarcomas according to IGF-1R expression by immunohistochemistry. METHODS We undertook a multicentre, open-label, phase 2 study in 19 cancer centres in the USA. Patients aged at least 16 years with a histologically confirmed diagnosis of bone or soft-tissue sarcoma were allocated on the basis of IGF-1R expression by immunohistochemistry to one of three treatment groups: IGF-1R-positive soft-tissue sarcoma (group A), IGF-1R-positive bone sarcomas (group B), or IGF-1R-negative bone and soft-tissue sarcoma (group C). Patients received weekly treatment with cixutumumab (6 mg/kg, intravenous) and temsirolimus (25 mg, intravenous flat dose) in 6-week cycles. A Simon optimal two-stage design was used for every arm. The primary endpoint was progression-free survival (PFS) at 12 weeks by intention-to-treat analysis in the first 54 patients assigned to every treatment arm. Although patients still remain on treatment, this trial has completed enrolment and this represents the final analysis. This study is registered with ClinicalTrials.gov, number NCT01016015. FINDINGS Between Nov 18, 2009, and April 11, 2012, 388 patients were screened for IGF-1R expression and 54 were assigned to each arm. 17 of 54 patients in the IGF-1R-positive soft-tissue sarcoma group (31%; one-sided 95% CI lower bound 21%; two-sided 90% CI 21-43), 19 of 54 in IGF-1R-positive bone sarcoma group (35%; one-sided 95% CI lower bound 24%; two-sided 90% CI 24-47), and 21 of 54 in the IGF-1R-negative group (39%, one-sided 95% CI lower bound 28%; two-sided 90% CI 28-51) were progression free at 12 weeks. On April 6, 2011, the protocol was amended to include three additional patients in the IGF-1R-positive soft-tissue sarcoma group (total of 57 patients) and nine more in the IGF-1R-negative group (total of 63 patients). There were 2546 adverse events reported during the study, 214 (8%) of which were grade 3-4. The most common grade 3-4 toxicities in the 174 treated patients were anaemia in 16 (9%) patients, hyperglycaemia in 18 (10%), hypophosphataemia in 16 (9%), lymphopenia in 25 (14%), oral mucositis in 19 (11%), and thrombocytopenia in 19 (11%). INTERPRETATION The combination of cixutumumab and temsirolimus shows clinical activity in patients with sarcoma and forms a basis for future trials. However, IGF-1R expression by immunohistochemistry is not predictive of clinical outcome after treatment with this combination. FUNDING National Cancer Institute and CycleforSurvival Fund, Memorial Sloan-Kettering Cancer Center.


Cancer | 2011

Activity of temozolomide and bevacizumab in the treatment of locally advanced, recurrent, and metastatic hemangiopericytoma and malignant solitary fibrous tumor

Min S. Park; Shreyaskumar Patel; Joseph A. Ludwig; Jonathan C. Trent; Charles A. Conrad; Alexander J. Lazar; Wei Lien Wang; Piyaporn Boonsirikamchai; Haesun Choi; Xuemei Wang; Robert S. Benjamin; Dejka M. Araujo

Hemangiopericytomas and malignant solitary fibrous tumors (HPC/SFT) are rare, closely related sarcomas with unpredictable behavior that respond infrequently to chemotherapy. An optimal systemic treatment strategy for advanced HPC/SFT has not yet been identified.


Current Treatment Options in Oncology | 2009

Ewing’s Sarcoma: Standard and Experimental Treatment Options

Vivek Subbiah; Pete Anderson; Alexander J. Lazar; Emily Burdett; Kevin A. Raymond; Joseph A. Ludwig

Opinion statementEwing sarcoma family tumors (EWS), which include classic Ewing’s sarcoma in addition to primitive neuroectodermal tumor and Askin tumor, are the second most common variety of primary bone cancer to afflict adolescents and young adults. Multi-disciplinary care incorporating advances in diagnosis, surgery, chemotherapy, and radiation has substantially improved the survival rate of patients with localized Ewing sarcoma to nearly 70%. Unfortunately, those advances have not significantly changed the long-term outcome for those with metastatic or recurrent disease; 5-year survival remains less than 25%. This apparent therapeutic plateau exists despite extensive effort during the last four decades to optimize the efficacy of cytotoxic chemotherapy through combination of chemotherapies of mechanistically diverse action, dose-dense scheduling (provided as frequently as every 2 weeks), increased adjuvant treatment duration, and higher dosage per cycle (facilitated with parallel strides in supportive care incorporating growth factors). As has already occurred for malignancies such as breast or colon cancer, the “-omics-based” revolution has enhanced our understanding of the molecular changes responsible for Ewing’s tumor formation and identified a number of potential targets (such as IGF-1R or mTOR) amenable to biological therapy. It has also created both a challenge and an opportunity to develop predictive biomarkers capable of selecting patients most likely to benefit from targeted therapy. In this review, we discuss current standard-of-care for patients with Ewing’s sarcoma and highlight the most promising experimental therapies in early-phase clinical trials.


Cancer Research | 2009

Identification of Compounds Selectively Killing Multidrug-Resistant Cancer Cells

Dóra Türk; Matthew D. Hall; Benjamin F. Chu; Joseph A. Ludwig; Henry M. Fales; Michael M. Gottesman; Gergely Szakács

There is a great need for the development of novel chemotherapeutic agents that overcome the emergence of multidrug resistance (MDR) in cancer. We catalogued the National Cancer Institutes DTP drug repository in search of compounds showing increased toxicity in MDR cells. By comparing the sensitivity of parental cell lines with MDR derivatives, we identified 22 compounds possessing MDR-selective activity. Analysis of structural congeners led to the identification of 15 additional drugs showing increased toxicity in Pgp-expressing cells. Analysis of MDR-selective compounds led to the formulation of structure activity relationships and pharmacophore models. This data mining coupled with experimental data points to a possible mechanism of action linked to metal chelation. Taken together, the discovery of the MDR-selective compound set shows the robustness of the developing field of MDR-targeting therapy as a new strategy for resolving Pgp-mediated MDR.


Cancer Research | 2014

Universal Marker and Detection Tool for Human Sarcoma Circulating Tumor Cells

Arun Satelli; Abhisek Mitra; Jeffry Cutrera; Marcos Devarie; Xueqing Xia; Davis R. Ingram; Denada Dibra; Neeta Somaiah; Keila E. Torres; Vinod Ravi; Joseph A. Ludwig; Eugenie S. Kleinerman; Shulin Li

To date, no specific marker exists for the detection of circulating tumor cells (CTC) from different types of sarcomas, though tools are available for detection of CTCs in peripheral blood of patients with cancer for epithelial cancers. Here, we report cell-surface vimentin (CSV) as an exclusive marker on sarcoma CTC regardless of the tissue origin of the sarcoma as detected by a novel monoclonal antibody. Utilizing CSV as a probe, we isolated and enumerated sarcoma CTCs with high sensitivity and specificity from the blood of patients bearing different types of sarcoma, validating their phenotype by single cell genomic amplification, mutation detection, and FISH. Our results establish the first universal and specific CTC marker described for enumerating CTCs from different types of sarcoma, thereby providing a key prognosis tool to monitor cancer metastasis and relapse.

Collaboration


Dive into the Joseph A. Ludwig's collaboration.

Top Co-Authors

Avatar

Robert S. Benjamin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Shreyaskumar Patel

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Dejka M. Araujo

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Vivek Subbiah

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Vinod Ravi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Brian A. Menegaz

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Alexander J. Lazar

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Aung Naing

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salah Eddine Lamhamedi-Cherradi

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge