Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph A. Maddry is active.

Publication


Featured researches published by Joseph A. Maddry.


Tuberculosis | 2009

High Throughput Screening for Inhibitors of Mycobacterium tuberculosis H37Rv

Subramaniam Ananthan; Ellen R. Faaleolea; Robert C. Goldman; Judith V. Hobrath; Cecil D. Kwong; Barbara E. Laughon; Joseph A. Maddry; Alka Mehta; Lynn Rasmussen; Robert C. Reynolds; John A. Secrist; Nice Shindo; Dustin N. Showe; Melinda Sosa; William J. Suling; E. Lucile White

There is an urgent need for the discovery and development of new antitubercular agents that target new biochemical pathways and treat drug resistant forms of the disease. One approach to addressing this need is through high-throughput screening of medicinally relevant libraries against the whole bacterium in order to discover a variety of new, active scaffolds that will stimulate new biological research and drug discovery. Through the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (www.taacf.org), a large, medicinally relevant chemical library was screened against M. tuberculosis strain H37Rv. The screening methods and a medicinal chemistry analysis of the results are reported herein.


Tuberculosis | 2009

Antituberculosis Activity of the Molecular Libraries Screening Center Network Library

Joseph A. Maddry; Subramaniam Ananthan; Robert C. Goldman; Judith V. Hobrath; Cecil D. Kwong; Clinton Maddox; Lynn Rasmussen; Robert C. Reynolds; John A. Secrist; Melinda Sosa; E. Lucile White; Wei Zhang

There is an urgent need for the discovery and development of new antitubercular agents that target novel biochemical pathways and treat drug-resistant forms of the disease. One approach to addressing this need is through high-throughput screening of drug-like small molecule libraries against the whole bacterium in order to identify a variety of new, active scaffolds that will stimulate additional biological research and drug discovery. Through the Molecular Libraries Screening Center Network, the NIAID Tuberculosis Antimicrobial Acquisition and Coordinating Facility tested a 215,110-compound library against Mycobacterium tuberculosis strain H37Rv. A medicinal chemistry survey of the results from the screening campaign is reported herein.


Expert Review of Anti-infective Therapy | 2005

Therapeutic strategies for human microsporidia infections

Elizabeth S. Didier; Joseph A. Maddry; Paul J. Brindley; Mary E. Stovall; Peter J. Didier

Over the past 20 years, microsporidia have emerged as a cause of infectious diseases in AIDS patients, organ transplant recipients, children, travelers, contact lens wearers and the elderly. Enterocytozoon bieneusi and the Encephalitozoon spp., Encephalitozoon cuniculi, Encephalitozoon hellem and Encephalitozoon intestinalis, are the most frequently identified microsporidia in humans, and are associated with diarrhea and systemic disease. The microsporidia are small, single-celled, obligately intracellular parasites that have been identified in water sources, as well as in wild, domestic and food-producing farm animals, thereby raising concerns for waterborne, foodborne and zoonotic transmission. Current therapies for microsporidiosis include albendazole, a benzimidazole that inhibits microtubule assembly and is effective against several microsporidia, including the Encephalitozoon spp., although it is less effective against Encephalitozoon bieneusi. Fumagillin, an antibiotic and antiangiogenic compound produced by Aspergillus fumigatus, is more broadly effective against Encephalitozoon spp. and E. bieneusi; however, is toxic when administered systemically to mammals. Recent studies are also focusing on compounds that target the microsporidia polyamines (e.g., polyamine analogs), methionine aminopeptidase 2 (e.g., fumagillin-related compounds), chitin inhibitors (e.g., nikkomycins), topoisomerases (e.g., fluoroquinolones) and tubulin (e.g., benzimidazole-related compounds).


Bioorganic & Medicinal Chemistry | 2001

Studies on (β,1→5) and (β,1→6) linked octyl Galf disaccharides as substrates for mycobacterial galactosyltransferase activity

Ashish K. Pathak; Vibha Pathak; Lainne E. Seitz; Joseph A. Maddry; Sudagar S. Gurcha; Gurdyal S. Besra; William J. Suling; Robert C. Reynolds

Abstract The emergence of multi-drug resistant (MDR) strains of Mycobacterium tuberculosis (MTB) and the continuing pandemic of tuberculosis emphasizes the urgent need for the development of new anti-tubercular agents with novel drug targets. The recent structural elucidation of the mycobacterial cell wall highlights a large variety of structurally unique components that may be a basis for new drug development. This publication describes the synthesis, characterization, and screening of several octyl Gal f (β,1→5)Gal f and octyl Gal f (β,1→6)Gal f derivatives. A cell-free assay system has been utilized for galactosyltransferase activity using UDP[ 14 C]Gal f as the glycosyl donor, and in vitro inhibitory activity has been determined in a colorimetric broth microdilution assay system against MTB H37Ra and three clinical isolates of Mycobacterium avium complex (MAC). Certain derivatives showed moderate activities against MTB and MAC. The biological evaluation of these disaccharides suggests that more hydrophobic analogues with a blocked reducing end showed better activity as compared to totally deprotected disaccharides that more closely resemble the natural substrates in cell wall biosynthesis.


Antimicrobial Agents and Chemotherapy | 2008

Efficacy of quinoxaline-2-carboxylate 1,4-di-N-oxide derivatives in experimental tuberculosis.

Esther Vicente; Raquel Villar; Asunción Burguete; Beatriz Solano; Silvia Pérez-Silanes; Ignacio Aldana; Joseph A. Maddry; Anne J. Lenaerts; Scott G. Franzblau; Sang Hyun Cho; Antonio Monge; Robert C. Goldman

ABSTRACT This study extends earlier reports regarding the in vitro efficacies of the 1,4-di-N-oxide quinoxaline derivatives against Mycobacterium tuberculosis and has led to the discovery of a derivative with in vivo efficacy in the mouse model of tuberculosis. Quinoxaline-2-carboxylate 1,4-di-N-oxide derivatives were tested in vitro against a broad panel of single-drug-resistant M. tuberculosis strains. The susceptibilities of these strains to some compounds were comparable to those of strain H37Rv, as indicated by the ratios of MICs for resistant and nonresistant strains, supporting the premise that 1,4-di-N-oxide quinoxaline derivatives have a novel mode of action unrelated to those of the currently used antitubercular drugs. Specific derivatives were further evaluated in a series of in vivo assays, including evaluations of the maximum tolerated doses, the levels of oral bioavailability, and the efficacies in a low-dose aerosol model of tuberculosis in mice. One compound, ethyl 7-chloro-3-methylquinoxaline-2-carboxylate 1,4-dioxide, was found to be (i) active in reducing CFU counts in both the lungs and spleens of infected mice following oral administration, (ii) active against PA-824-resistant Mycobacterium bovis, indicating that the pathway of bioreduction/activation is different from that of PA-824 (a bioreduced nitroimidazole that is in clinical trials), and (iii) very active against nonreplicating bacteria adapted to low-oxygen conditions. These data indicate that 1,4-di-N-oxide quinoxalines hold promise for the treatment of tuberculosis.


Carbohydrate Research | 1999

ETHAMBUTOL-SUGAR HYBRIDS AS POTENTIAL INHIBITORS OF MYCOBACTERIAL CELL-WALL BIOSYNTHESIS

Robert C. Reynolds; Namita Bansal; Jerry D. Rose; Joyce D. Friedrich; William J. Suling; Joseph A. Maddry

Ethambutol is an established front-line agent for the treatment of tuberculosis, and is also active against Mycobacterium avium infection. However, this agent exhibits toxicity, and is considered to have low potency. The action of ethambutol on the mycobacterial cell wall, particularly the arabinan, and comparison of the structure of ethambutol with several of the cell-wall saccharides, suggested that ethambutol-saccharide hybrids might lead to agents with a more selective mechanism of action. To this end, eight ethambutol-saccharide hybrids were synthesized and screened against M. tuberculosis and several clinical isolates of M. avium.


Bioorganic & Medicinal Chemistry | 2002

Studies on n-Octyl-5-(α-d-arabinofuranosyl)-β-d-galactofuranosides for Mycobacterial Glycosyltransferase Activity

Ashish K. Pathak; Vibha Pathak; William J. Suling; Sudagar S. Gurcha; Caroline B. Morehouse; Gurdyal S. Besra; Joseph A. Maddry; Robert C. Reynolds

Abstract The mycobacterial cell wall is a potential target for new drug development. Herein we report the preparation and activity of several n -octyl-5-(α- d -arabinofuranosyl)-β- d -galactofuranoside derivatives. A cell-free assay system has been utilized for determination of the ability of disaccharide analogues to act as arabinosyltransferase acceptors using [ 14 C]-DPA as the glycosyl donor. In addition, in vitro inhibitory activity has been determined in a colorimetric broth microdilution assay system against MTB H37Ra and three clinical isolates of Mycobacterium avium complex (MAC). One of these disaccharides showed moderate activity against MTB. The biological evaluation of these disaccharides suggests that more hydrophobic analogues with a blocked reducing end showed better activity as compared to a totally deprotected disaccharide that more closely resembles the natural substrates in cell wall biosynthesis.


Bioorganic & Medicinal Chemistry | 2001

Studies on α(1→5) linked octyl arabinofuranosyl disaccharides for mycobacterial arabinosyl transferase activity

Ashish K. Pathak; Vibha Pathak; Joseph A. Maddry; William J. Suling; Sudagar S. Gurcha; Gurdyal S. Besra; Robert C. Reynolds

The appearance multi-drug resistant Mycobacterium tuberculosis (MTB) throughout the world has prompted a search for new, safer and more active agents against tuberculosis. Based on studies of the biosynthesis of mycobacterial cell wall polysaccharides, octyl 5-O-(alpha-D-arabinofuranosyl)-alpha-D-arabinofuranoside analogues were synthesized and evaluated as inhibitors for M. tuberculosis and Mycobacterium avium. A cell free assay system has been used for the evaluation of these disaccharides as substrates for mycobacterial arabinosyltransferase activity.


Journal of Antimicrobial Chemotherapy | 2008

In vitro and in vivo antimycobacterial activities of ketone and amide derivatives of quinoxaline 1,4-di-N-oxide

Raquel Villar; Esther Vicente; Beatriz Solano; Silvia Pérez-Silanes; Ignacio Aldana; Joseph A. Maddry; Anne J. Lenaerts; Scott G. Franzblau; Sang Hyun Cho; Antonio Monge; Robert C. Goldman

OBJECTIVES To evaluate a novel series of quinoxaline 1,4-di-N-oxides for in vitro activity against Mycobacterium tuberculosis and for efficacy in a mouse model of tuberculosis (TB). METHODS Ketone and amide derivatives of quinoxaline 1,4-di-N-oxide were evaluated in in vitro and in vivo tests including: (i) activity against M. tuberculosis resistant to currently used antitubercular drugs including multidrug-resistant strains (MDR-TB resistant to isoniazid and rifampicin); (ii) activity against non-replicating persistent (NRP) bacteria; (iii) MBC; (iv) maximum tolerated dose, oral bioavailability and in vivo efficacy in mice; and (v) potential for cross-resistance with another bioreduced drug, PA-824. RESULTS Ten compounds were tested on single drug-resistant M. tuberculosis. In general, all compounds were active with ratios of MICs against resistant and non-resistant strains of <or=4.00. One compound, 5, was orally active in a murine model of TB, bactericidal, active against NRP bacteria and active on MDR-TB and poly drug-resistant clinical isolates (resistant to 3-5 antitubercular drugs). CONCLUSIONS Quinoxaline 1,4-di-N-oxides represent a new class of orally active antitubercular drugs. They are likely bioreduced to an active metabolite, but the pathway of bacterial activation was different from PA-824, a bioreducible nitroimidazole in clinical trials. Compound 5 was bactericidal and active on NRP organisms indicating that activation occurred in both growing and non-replicating bacteria leading to cell death. The presence of NRP bacteria is believed to be a major factor responsible for the prolonged nature of antitubercular therapy. If the bactericidal activity and activity on non-replicating bacteria in vitro translate to in vivo conditions, quinoxaline 1,4-di-N-oxides may offer a path to shortened therapy.


Bioorganic & Medicinal Chemistry Letters | 1998

Homologated aza analogs of arabinose as antimycobacterial agents

Joseph A. Maddry; Namita Bansal; Luiz E. Bermudez; Robert N. Comber; Ian M. Orme; William J. Suling; Larry N. Wilson; Robert C. Reynolds

A series of hydrolytically-stable aza analogs of arabinofuranose was prepared and evaluated against Mycobacterium tuberculosis and M. avium. The compounds were designed to mimic the putative arabinose donor involved in biogenesis of the essential cell wall polysaccharide, arabinogalactan. Though most compounds displayed little activity in cell culture, one compound showed significant activity in infected macrophage models.

Collaboration


Dive into the Joseph A. Maddry's collaboration.

Top Co-Authors

Avatar

John A. Secrist

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cecil D. Kwong

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar

Lynn Rasmussen

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar

William J. Suling

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar

E. Lucile White

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kamal N. Tiwari

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar

Namita Bansal

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ashish K. Pathak

Southern Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge