Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph A. Seggio is active.

Publication


Featured researches published by Joseph A. Seggio.


Alcoholism: Clinical and Experimental Research | 2012

Effects of Withdrawal from Chronic Intermittent Ethanol Vapor on the Level and Circadian Periodicity of Running‐Wheel Activity in C57BL/6J and C3H/HeJ Mice

Ryan W. Logan; Walter D. McCulley; Joseph A. Seggio; Alan M. Rosenwasser

BACKGROUND Alcohol withdrawal is associated with behavioral and chronobiological disturbances that may persist during protracted abstinence. We previously reported that C57BL/6J (B6) mice show marked but temporary reductions in running-wheel activity, and normal free-running circadian rhythms, following a 4-day chronic intermittent ethanol (CIE) vapor exposure (16 hours of ethanol vapor exposure alternating with 8 hours of withdrawal). In the present experiments, we extend these observations in 2 ways: (i) by examining post-CIE locomotor activity in C3H/HeJ (C3H) mice, an inbred strain characterized by high sensitivity to ethanol withdrawal, and (ii) by directly comparing the responses of B6 and C3H mice to a longer-duration CIE protocol. METHODS In Experiment 1, C3H mice were exposed to the same 4-day CIE protocol used in our previous study with B6 mice (referred to here as the 1-cycle CIE protocol). In Experiment 2, C3H and B6 mice were exposed to 3 successive 4-day CIE cycles, each separated by 2 days of withdrawal (the 3-cycle CIE protocol). Running-wheel activity was monitored prior to and following CIE, and post-CIE activity was recorded in constant darkness to allow assessment of free-running circadian period and phase. RESULTS C3H mice displayed pronounced reductions in running-wheel activity that persisted for the duration of the recording period (up to 30 days) following both 1-cycle (Experiment 1) and 3-cycle (Experiment 2) CIE protocols. In contrast, B6 mice showed reductions in locomotor activity that persisted for about 1 week following the 3-cycle CIE protocol, similar to the results of our previous study using a 1-cycle protocol in this strain. Additionally, C3H mice showed significant shortening of free-running period following the 3-cycle, but not the 1-cycle, CIE protocol, while B6 mice showed normal free-running rhythms. CONCLUSIONS These results reveal genetic differences in the persistence of ethanol withdrawal-induced hypo-locomotion. In addition, chronobiological alterations during extended abstinence may depend on both genetic susceptibility and an extended prior withdrawal history. The present data establish a novel experimental model for long-term behavioral and circadian disruptions associated with ethanol withdrawal.


Behavioural Brain Research | 2013

Larval ethanol exposure alters free-running circadian rhythm and per Locus transcription in adult D. melanogaster period mutants

S. Tariq Ahmad; Steven B. Steinmetz; Hailey M. Bussey; Bernard Possidente; Joseph A. Seggio

Alcohol consumption causes disruptions in a variety of daily rhythms, including the circadian free-running rhythm. A previous study conducted in our laboratories has shown that larval ethanol exposure alters the free-running period in adult Canton-S Drosophila melanogaster. Few studies, however, have explored the effect of alcohol exposure on organisms exhibiting circadian periods radically different than (normal) 24-h. We reared Canton-S, period long, and period short Drosophila melanogaster larvae on 10%-ethanol supplemented food, and assessed their adult free-running locomotor activity and period transcript at ZT 12. We demonstrate that in Canton-S larval ethanol exposure shortens the adult free-running locomotor activity but does not significantly alter period mRNA levels at ZT 12. Period long mutants exposed to larval ethanol had significantly shortened adult free-running locomotor activity rhythms and decreased period mRNA levels, while period short mutants lengthened their free-running rhythm and showed increased period mRNA levels at ZT 12 after being exposed to larval ethanol. These results indicate that the effects of ethanol on the circadian clock might depend upon the baseline circadian period of the organism or that period mutant gene expression is sensitive to developmental ethanol treatment.


Behavioural Brain Research | 2016

Voluntary wheel-running attenuates insulin and weight gain and affects anxiety-like behaviors in C57BL6/J mice exposed to a high-fat diet

Jasmin A. Hicks; Aikaterini Hatzidis; Nicole L. Arruda; Rachel R. Gelineau; Isabella Monteiro De Pina; Kenneth W. Adams; Joseph A. Seggio

It is widely accepted that lifestyle plays a crucial role on the quality of life in individuals, particularly in western societies where poor diet is correlated to alterations in behavior and the increased possibility of developing type-2 diabetes. While exercising is known to produce improvements to overall health, there is conflicting evidence on how much of an effect exercise has staving off the development of type-2 diabetes or counteracting the effects of diet on anxiety. Thus, this study investigated the effects of voluntary wheel-running access on the progression of diabetes-like symptoms and open field and light-dark box behaviors in C57BL/6J mice fed a high-fat diet. C57BL/6J mice were placed into either running-wheel cages or cages without a running-wheel, given either regular chow or a high-fat diet, and their body mass, food consumption, glucose tolerance, insulin and c-peptide levels were measured. Mice were also exposed to the open field and light-dark box tests for anxiety-like behaviors. Access to a running-wheel partially attenuated the obesity and hyperinsulinemia associated with high-fat diet consumption in these mice, but did not affect glucose tolerance or c-peptide levels. Wheel-running strongly increased anxiety-like and decreased explorative-like behaviors in the open field and light-dark box, while high-fat diet consumption produced smaller increases in anxiety. These results suggest that voluntary wheel-running can assuage some, but not all, of the physiological problems associated with high-fat diet consumption, and can modify anxiety-like behaviors regardless of diet consumed.


Chronobiology International | 2012

Larval Ethanol Exposure Alters Adult Circadian Free-Running Locomotor Activity Rhythm in Drosophila melanogaster

Joseph A. Seggio; Bernard Possidente; S. Tariq Ahmad

Alcohol consumption causes disruptions in a variety of daily rhythms, including the sleep-wake cycle. Few studies have explored the effect of alcohol exposure only during developmental stages preceding maturation of the adult circadian clock, and none have examined the effects of alcohol on clock function in Drosophila. This study investigates developmental and behavioral correlates between larval ethanol exposure and the adult circadian clock in Drosophila melanogaster, a well-established model for studying circadian rhythms and effects of ethanol exposure. We reared Drosophila larvae on 0%, 10%, or 20% ethanol-supplemented food and assessed effects upon eclosion and the free-running period of the circadian rhythm of locomotor activity. We observed a dose-dependent effect of ethanol on period, with higher doses resulting in shorter periods. We also identified the third larval instar stage as a critical time for the developmental effects of 10% ethanol on circadian period. These results demonstrate that developmental ethanol exposure causes sustainable shortening of the adult free-running period in Drosophila melanogaster, even after adult exposure to ethanol is terminated, and suggests that the third instar is a sensitive time for this effect. (Author correspondence: [email protected])


Journal of Fish and Wildlife Management | 2011

Spearmint ( l -carvone) Oil and Wintergreen (methyl salicylate) Oil Emulsion is an Effective Immersion Anesthetic of Fishes

G. Russell Danner; Katherine W. Muto; Anna M. Zieba; Chelsea M. Stillman; Joseph A. Seggio; S. Tariq Ahmad

Abstract This study evaluates the effects of a spearmint (/-carvone) and wintergreen oil (methyl salicylate) emulsion (CMSE) on age 1 landlocked Atlantic salmon Salmo salar sebago (hereafter salmon). Salmon were immersed in either 257 µl/L CMSE or 75 mg/L tricaine methanesulfonate (MS-222) to induce anesthesia (stage 4), useful for emersion and noninvasive husbandry procedures, and then salmon were recovered in fresh water. Induction was quicker in the CMSE group; however, recovery was quicker in the MS-222 group. A second experiment was conducted in which salmon were immersed in 257 µl/L CMSE for 8.5 min, or 75 mg/L MS-222 for 8.5 min in order to compare electrocardiographs during deeper anesthesia (stage 5) between salmon continuously immersed in CMSE to those continuously immersed in MS-222. Because salmon remained sedated longer after CMSE exposure than after MS-222 exposure, a third group of salmon was immersed in 257 µl/L CMSE for just 2.5 min before undergoing the 6-min electrocardiograph procedure...


Alcohol | 2015

Alcohol and Lithium Have Opposing Effects on the Period and Phase of the Behavioral Free-running Activity Rhythm

Nara F. Nascimento; Karen N. Carlson; Danielle N. Amaral; Ryan W. Logan; Joseph A. Seggio

Bipolar patients have a high prevalence of comorbid alcohol use and abuse disorders, while chronic alcohol drinking may increase the presence and severity of certain symptoms of bipolar disorder. As such, there may be many individuals that are prescribed lithium to alleviate the manic symptoms of bipolar disorder, but also drink alcohol concurrently. In addition, both alcoholics and individuals with bipolar disorder often exhibit disruptions to their sleep-wake cycles and other circadian rhythms. Interestingly, both ethanol and lithium are known to alter both the period and the phase of free-running rhythms in mammals. While lithium is known to lengthen the period, ethanol seems to shorten the period and attenuate the responses to acute light pulses. Therefore, the present study aimed to determine whether ethanol and lithium have opposing effects on the circadian pacemaker when administered together. C57BL/6J mice were provided drinking solutions containing lithium, alcohol, or both, and their free-running rhythms along with their response to photic phase shifts were investigated. Mice treated with lithium displayed period lengthening, which was almost completely negated when ethanol was added. Moreover, ethanol significantly attenuated light-induced phase delays while the addition of lithium partially restored this response. These results indicate that alcohol and lithium have opposing effects on behavioral circadian rhythms. Individuals with bipolar disorder who are prescribed lithium and who drink alcohol might be inadvertently altering their sleep and circadian cycles, which may exacerbate their symptoms.


Behavioural Brain Research | 2016

Mutations in the circadian gene period alter behavioral and biochemical responses to ethanol in Drosophila

Jennifer Liao; Joseph A. Seggio; S. Tariq Ahmad

Clock genes, such as period, which maintain an organisms circadian rhythm, can have profound effects on metabolic activity, including ethanol metabolism. In turn, ethanol exposure has been shown in Drosophila and mammals to cause disruptions of the circadian rhythm. Previous studies from our labs have shown that larval ethanol exposure disrupted the free-running period and period expression of Drosophila. In addition, a recent study has shown that arrhythmic flies show no tolerance to ethanol exposure. As such, Drosophila period mutants, which have either a shorter than wild-type free-running period (perS) or a longer one (perL), may also exhibit altered responses to ethanol due to their intrinsic circadian differences. In this study, we tested the initial sensitivity and tolerance of ethanol exposure on Canton-S, perS, and perL, and then measured their Alcohol Dehydrogenase (ADH) and body ethanol levels. We showed that perL flies had slower sedation rate, longer recovery from ethanol sedation, and generated higher tolerance for sedation upon repeated ethanol exposure compared to Canton-S wild-type flies. Furthermore, perL flies had lower ADH activity and had a slower ethanol clearance compared to wild-type flies. The findings of this study suggest that period mutations influence ethanol induced behavior and ethanol metabolism in Drosophila and that flies with longer circadian periods are more sensitive to ethanol exposure.


Chronobiology International | 2016

Long-term wheel-running and acute 6-h advances alter glucose tolerance and insulin levels in TALLYHO/JngJ mice

Nara F. Nascimento; Jasmin A. Hicks; Karen N. Carlson; Aikaterini Hatzidis; Danielle N. Amaral; Ryan W. Logan; Joseph A. Seggio

ABSTRACT Studies have shown a relationship between circadian rhythm disruptions and type-2 diabetes. This investigation examined the effects of circadian disruption (6-h phase advances) on the progression of diabetes in a type-2 diabetic mouse model –TALLYHO/JngJ – and whether wheel-running can alleviate the effects of the phase advances. 6-h advances alter fasting glucose, glucose tolerance and insulin production. Wheel-running reduced body mass, improved glucose tolerance and reduced insulin in TALLYHO/JngJ and alleviated some of the changes in diabetic symptoms due to 6-h advances. These results indicate that individuals with type-2 diabetes can benefit from physical activity and exercise can be a countermeasure to offset the effects of an acute phase advance.


Biological Rhythm Research | 2016

6-hour Advances Alter Circadian Activity Patterns, Fasting Glucose and Insulin Levels in C57BL6/J Mice

Nara F. Nascimento; Jasmin A. Hicks; Karen N. Carlson; Aikaterini Hatzidis; Danielle N. Amaral; Joseph A. Seggio

Chronobiological disruptions, including shift work, have been linked to a number of disorders such as fatigue and diabetes. Additionally, there is evidence to support that exercise cannot only counteract fatigue and the onset of diabetes, but also alleviate the other negative symptoms associated with shift work. Therefore, the present study investigated the effects of wheel running and monthly 6-h phase advances on the circadian locomotor activity patterns and glucose and insulin levels in C57BL6/J mice. 6-h phase advances produced decreases in fasting glucose and increases in insulin, and wheel-running was able to alleviate the spike in insulin secretion. Additionally, mice experiencing the shift increased their food intake, despite having no change in body mass. Circadian wheel-running activity was also altered in phase-advanced mice. These results provide further evidence that chronobiological disruptions can lead to alterations in physiology and behavior, and that exercise can alleviate some of those symptoms.


Brain and behavior | 2017

The behavioral and physiological effects of high‐fat diet and alcohol consumption: Sex differences in C57BL6/J mice

Rachel R. Gelineau; Nicole L. Arruda; Jasmin A. Hicks; Isabella Monteiro De Pina; Aikaterini Hatzidis; Joseph A. Seggio

Animal studies can be a great tool to investigate sex differences in a variety of different ways, including behavioral and physiological responses to drug treatments and different “lifestyle variables” such as diets. Consumption of both high‐fat diets and alcohol is known to affect anxiety behaviors and overall health. This project investigated how high‐fat diet and alcohol access and its combination affected the behavior and physiology of male and female C57BL/6J mice.

Collaboration


Dive into the Joseph A. Seggio's collaboration.

Top Co-Authors

Avatar

Jasmin A. Hicks

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Aikaterini Hatzidis

Bridgewater State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole L. Arruda

Bridgewater State University

View shared research outputs
Top Co-Authors

Avatar

Rachel R. Gelineau

Bridgewater State University

View shared research outputs
Top Co-Authors

Avatar

Ryan W. Logan

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danielle N. Amaral

Bridgewater State University

View shared research outputs
Top Co-Authors

Avatar

Karen N. Carlson

Bridgewater State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge