Joseph Boland
Science Applications International Corporation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joseph Boland.
Human Genetics | 2013
Bari J. Ballew; Meredith Yeager; Kevin B. Jacobs; Neelam Giri; Joseph Boland; Laurie Burdett; Blanche P. Alter; Sharon A. Savage
Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer predisposition syndrome caused by aberrant telomere biology. The classic triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC, but substantial clinical heterogeneity exists; the clinically severe variant Hoyeraal Hreidarsson syndrome (HH) also includes cerebellar hypoplasia, severe immunodeficiency, enteropathy, and intrauterine growth retardation. Germline mutations in telomere biology genes account for approximately one-half of known DC families. Using exome sequencing, we identified mutations in RTEL1, a helicase with critical telomeric functions, in two families with HH. In the first family, two siblings with HH and very short telomeres inherited a premature stop codon from their mother who has short telomeres. The proband from the second family has HH and inherited a premature stop codon in RTEL1 from his father and a missense mutation from his mother, who also has short telomeres. In addition, inheritance of only the missense mutation led to very short telomeres in the proband’s brother. Targeted sequencing identified a different RTEL1 missense mutation in one additional DC proband who has bone marrow failure and short telomeres. Both missense mutations affect the helicase domain of RTEL1, and three in silico prediction algorithms suggest that they are likely deleterious. The nonsense mutations both cause truncation of the RTEL1 protein, resulting in loss of the PIP box; this may abrogate an important protein–protein interaction. These findings implicate a new telomere biology gene, RTEL1, in the etiology of DC.
PLOS Genetics | 2013
Bari J. Ballew; Vijai Joseph; Saurav De; Grzegorz Sarek; Jean-Baptiste Vannier; Travis H. Stracker; Kasmintan A. Schrader; Trudy N. Small; Richard J. O'Reilly; Chris Manschreck; Megan Harlan Fleischut; Liying Zhang; John Sullivan; Kelly L. Stratton; Meredith Yeager; Kevin B. Jacobs; Neelam Giri; Blanche P. Alter; Joseph Boland; Laurie Burdett; Kenneth Offit; Simon J. Boulton; Sharon A. Savage; John H.J. Petrini
Dyskeratosis congenita (DC) is a heterogeneous inherited bone marrow failure and cancer predisposition syndrome in which germline mutations in telomere biology genes account for approximately one-half of known families. Hoyeraal Hreidarsson syndrome (HH) is a clinically severe variant of DC in which patients also have cerebellar hypoplasia and may present with severe immunodeficiency and enteropathy. We discovered a germline autosomal recessive mutation in RTEL1, a helicase with critical telomeric functions, in two unrelated families of Ashkenazi Jewish (AJ) ancestry. The affected individuals in these families are homozygous for the same mutation, R1264H, which affects three isoforms of RTEL1. Each parent was a heterozygous carrier of one mutant allele. Patient-derived cell lines revealed evidence of telomere dysfunction, including significantly decreased telomere length, telomere length heterogeneity, and the presence of extra-chromosomal circular telomeric DNA. In addition, RTEL1 mutant cells exhibited enhanced sensitivity to the interstrand cross-linking agent mitomycin C. The molecular data and the patterns of inheritance are consistent with a hypomorphic mutation in RTEL1 as the underlying basis of the clinical and cellular phenotypes. This study further implicates RTEL1 in the etiology of DC/HH and immunodeficiency, and identifies the first known homozygous autosomal recessive disease-associated mutation in RTEL1.
Human Molecular Genetics | 2011
Charles C. Chung; Julia Ciampa; Meredith Yeager; Kevin B. Jacobs; Sonja I. Berndt; Richard B. Hayes; Jesus Gonzalez-Bosquet; Peter Kraft; Sholom Wacholder; Nick Orr; Kai Yu; Amy Hutchinson; Joseph Boland; Quan Chen; Heather Spencer Feigelson; Michael J. Thun; W. Ryan Diver; Demetrius Albanes; Jarmo Virtamo; Stephanie J. Weinstein; Fredrick R. Schumacher; Geraldine Cancel-Tassin; Olivier Cussenot; Antoine Valeri; Gerald L. Andriole; E. David Crawford; Christopher A. Haiman; Brian E. Henderson; Laurence N. Kolonel; Loic Le Marchand
Genome-wide association studies have identified prostate cancer susceptibility alleles on chromosome 11q13. As part of the Cancer Genetic Markers of Susceptibility (CGEMS) Initiative, the region flanking the most significant marker, rs10896449, was fine mapped in 10 272 cases and 9123 controls of European origin (10 studies) using 120 common single nucleotide polymorphisms (SNPs) selected by a two-staged tagging strategy using HapMap SNPs. Single-locus analysis identified 18 SNPs below genome-wide significance (P< 10(-8)) with rs10896449 the most significant (P= 7.94 × 10(-19)). Multi-locus models that included significant SNPs sequentially identified a second association at rs12793759 [odds ratio (OR) = 1.14, P= 4.76 × 10(-5), adjusted P= 0.004] that is independent of rs10896449 and remained significant after adjustment for multiple testing within the region. rs10896438, a proxy of previously reported rs12418451 (r(2)= 0.96), independent of both rs10896449 and rs12793759 was detected (OR = 1.07, P= 5.92 × 10(-3), adjusted P= 0.054). Our observation of a recombination hotspot that separates rs10896438 from rs10896449 and rs12793759, and low linkage disequilibrium (rs10896449-rs12793759, r(2)= 0.17; rs10896449-rs10896438, r(2)= 0.10; rs12793759-rs10896438, r(2)= 0.12) corroborate our finding of three independent signals. By analysis of tagged SNPs across ∼123 kb using next generation sequencing of 63 controls of European origin, 1000 Genome and HapMap data, we observed multiple surrogates for the three independent signals marked by rs10896449 (n= 31), rs10896438 (n= 24) and rs12793759 (n= 8). Our results indicate that a complex architecture underlying the common variants contributing to prostate cancer risk at 11q13. We estimate that at least 63 common variants should be considered in future studies designed to investigate the biological basis of the multiple association signals.
Journal of the National Cancer Institute | 2015
Lisa Mirabello; Meredith Yeager; Phuong L. Mai; Julie M. Gastier-Foster; Richard Gorlick; Chand Khanna; Ana Patiño-García; Luis Sierrasesúmaga; Fernando Lecanda; Irene L. Andrulis; Jay S. Wunder; Nalan Gokgoz; Donald A. Barkauskas; Xijun Zhang; Aurelie Vogt; Joseph Boland; Stephen J. Chanock; Sharon A. Savage
The etiologic contribution of germline genetic variation to sporadic osteosarcoma is not well understood. Osteosarcoma is a sentinel cancer of Li-Fraumeni syndrome (LFS), in which approximately 70% of families meeting the classic criteria have germline TP53 mutations. We sequenced TP53 exons in 765 osteosarcoma cases. Data were analyzed with χ(2) tests, logistic regression, and Cox proportional hazards regression models. We observed a high frequency of young osteosarcoma cases (age <30 years) carrying a known LFS- or likely LFS-associated mutation (3.8%) or rare exonic variant (5.7%) with an overall frequency of 9.5%, compared with none in case patients age 30 years and older (P < .001). This high TP53 mutation prevalence in young osteosarcoma cases is statistically significantly greater than the previously reported prevalence of 3% (P = .0024). We identified a novel association between a TP53 rare variant and metastasis at diagnosis of osteosarcoma (rs1800372, odds ratio = 4.27, 95% confidence interval = 1.2 to 15.5, P = .026). Genetic susceptibility to young onset osteosarcoma is distinct from older adult onset osteosarcoma, with a high frequency of LFS-associated and rare exonic TP53 variants.
Cancer Discovery | 2015
Lisa Mirabello; Roelof Koster; Branden S. Moriarity; Logan G. Spector; Paul S. Meltzer; Joy Gary; Mitchell J. Machiela; Nathan Pankratz; Orestis A. Panagiotou; David A. Largaespada; Zhaoming Wang; Julie M. Gastier-Foster; Richard Gorlick; Chand Khanna; Silvia Regina Caminada de Toledo; Antonio Sergio Petrilli; Ana Patiño-García; Luis Sierrasesúmaga; Fernando Lecanda; Irene L. Andrulis; Jay S. Wunder; Nalan Gokgoz; Massimo Serra; Claudia M. Hattinger; Piero Picci; Katia Scotlandi; Adrienne M. Flanagan; Roberto Tirabosco; Maria Fernanda Amary; Dina Halai
UNLABELLED Metastasis is the leading cause of death in patients with osteosarcoma, the most common pediatric bone malignancy. We conducted a multistage genome-wide association study of osteosarcoma metastasis at diagnosis in 935 osteosarcoma patients to determine whether germline genetic variation contributes to risk of metastasis. We identified an SNP, rs7034162, in NFIB significantly associated with metastasis in European osteosarcoma cases, as well as in cases of African and Brazilian ancestry (meta-analysis of all cases: P = 1.2 × 10(-9); OR, 2.43; 95% confidence interval, 1.83-3.24). The risk allele was significantly associated with lowered NFIB expression, which led to increased osteosarcoma cell migration, proliferation, and colony formation. In addition, a transposon screen in mice identified a significant proportion of osteosarcomas harboring inactivating insertions in Nfib and with lowered NFIB expression. These data suggest that germline genetic variation at rs7034162 is important in osteosarcoma metastasis and that NFIB is an osteosarcoma metastasis susceptibility gene. SIGNIFICANCE Metastasis at diagnosis in osteosarcoma is the leading cause of death in these patients. Here we show data that are supportive for the NFIB locus as associated with metastatic potential in osteosarcoma.
Human Genetics | 2009
Meredith Yeager; Zuoming Deng; Joseph Boland; Casey Matthews; Jennifer Bacior; Victor Lonsberry; Amy Hutchinson; Laura Burdett; Liqun Qi; Kevin B. Jacobs; Jesus Gonzalez-Bosquet; Sonja I. Berndt; Richard B. Hayes; Robert N. Hoover; Gilles Thomas; David J. Hunter; Michael Dean; Stephen J. Chanock
Genome-wide association studies of prostate cancer have identified single nucleotide polymorphism (SNP) markers in a region of chromosome 10q11.2, harboring the microseminoprotein-β (MSMB) gene. Both the gene product of MSMB, the prostate secretory protein 94 (PSP94) and its binding protein (PSPBP), have been previously investigated as serum biomarkers for prostate cancer progression. Recent functional work has shown that different alleles of the significantly associated SNP in the promoter of MSMB found to be associated with prostate cancer risk, rs10993994, can influence its expression in tumors and in vitro studies. Since it is plausible that additional variants in this region contribute to the risk of prostate cancer, we have used next-generation sequencing technology to resequence a ~97-kb region that includes the area surrounding MSMB (chr10: 51,168,025–51,265,101) in 36 prostate cancer cases, 26 controls of European origin, and 8 unrelated CEPH individuals in order to identify additional variants to investigate in functional studies. We identified 241 novel polymorphisms within this region, including 142 in the 51-kb block of linkage disequilibrium (LD) that contains rs10993994 and the proximal promoter of MSMB. No sites were observed to be polymorphic within the exons of MSMB.
Journal of Medical Genetics | 2017
Lisa Mirabello; Payal P. Khincha; Steven R. Ellis; Neelam Giri; Seth Brodie; Settara C. Chandrasekharappa; Frank X. Donovan; Weiyin Zhou; Belynda Hicks; Joseph Boland; Meredith Yeager; Bin Zhu; Mingyi Wang; Blanche P. Alter; Sharon A. Savage
Background Diamond-Blackfan anaemia (DBA) is an inherited bone marrow failure syndrome (IBMFS) characterised by erythroid hypoplasia. It is associated with congenital anomalies and a high risk of developing specific cancers. DBA is caused predominantly by autosomal dominant pathogenic variants in at least 15 genes affecting ribosomal biogenesis and function. Two X-linked recessive genes have been identified. Objectives We aim to identify the genetic aetiology of DBA. Methods Of 87 families with DBA enrolled in an institutional review board-approved cohort study (ClinicalTrials.gov Identifier:NCT00027274), 61 had genetic testing information available. Thirty-five families did not have a known genetic cause and thus underwent comprehensive genomic evaluation with whole exome sequencing, deletion and CNV analyses to identify their disease-associated pathogenic variant. Controls for functional studies were healthy mutation-negative individuals enrolled in the same study. Results Our analyses uncovered heterozygous pathogenic variants in two previously undescribed genes in two families. One family had a non-synonymous variant (p.K77N) in RPL35; the second family had a non-synonymous variant (p. L51S) in RPL18. Both of these variants result in pre-rRNA processing defects. We identified heterozygous pathogenic variants in previously known DBA genes in 16 of 35 families. Seventeen families who underwent genetic analyses are yet to have a genetic cause of disease identified. Conclusions Overall, heterozygous pathogenic variants in ribosomal genes were identified in 44 of the 61 families (72%). De novo pathogenic variants were observed in 57% of patients with DBA. Ongoing studies of DBA genomics will be important to understand this complex disorder.
Haematologica | 2016
Melissa Rotunno; Mary L. McMaster; Joseph Boland; Sara Bass; Xijun Zhang; Laurie Burdett; Belynda Hicks; Sarangan Ravichandran; Brian T. Luke; Meredith Yeager; Laura Fontaine; Paula L. Hyland; Alisa M. Goldstein; Stephen J. Chanock; Neil E. Caporaso; Margaret A. Tucker; Lynn R. Goldin
Hodgkin lymphoma shows strong familial aggregation but no major susceptibility genes have been identified to date. The goal of this study was to identify high-penetrance variants using whole exome sequencing in 17 Hodgkin lymphoma prone families with three or more affected cases or obligate carriers (69 individuals), followed by targeted sequencing in an additional 48 smaller HL families (80 individuals). Alignment and variant calling were performed using standard methods. Dominantly segregating, rare, coding or potentially functional variants were further prioritized based on predicted deleteriousness, conservation, and potential importance in lymphoid malignancy pathways. We selected 23 genes for targeted sequencing. Only the p.A1065T variant in KDR (kinase insert domain receptor) also known as VEGFR2 (vascular endothelial growth factor receptor 2) was replicated in two independent Hodgkin lymphoma families. KDR is a type III receptor tyrosine kinase, the main mediator of vascular endothelial growth factor induced proliferation, survival, and migration. Its activity is associated with several diseases including lymphoma. Functional experiments have shown that p.A1065T, located in the activation loop, can promote constitutive autophosphorylation on tyrosine in the absence of vascular endothelial growth factor and that the kinase activity was abrogated after exposure to kinase inhibitors. A few other promising mutations were identified but appear to be “private”. In conclusion, in the largest sequenced cohort of Hodgkin lymphoma families to date, we identified a causal mutation in the KDR gene. While independent validation is needed, this mutation may increase downstream tumor cell proliferation activity and might be a candidate for targeted therapy.
Carcinogenesis | 2016
Clara Bodelon; Svetlana Vinokurova; Joshua N. Sampson; Johan A. den Boon; Joan L. Walker; Mark Horswill; Keegan Korthauer; Mark Schiffman; Mark E. Sherman; Rosemary E. Zuna; Jason Mitchell; Xijun Zhang; Joseph Boland; Anil K. Chaturvedi; S. Terence Dunn; Michael A. Newton; Paul Ahlquist; Sophia S. Wang; Nicolas Wentzensen
188 original manuscript Chromosomal copy number alterations and HPV integration in cervical precancer and invasive cancer Clara Bodelon1,*, Svetlana Vinokurova2, Joshua N. Sampson1, Johan A. den Boon3,4,5, Joan L. Walker6, Mark A. Horswill3,5, Keegan Korthauer7, Mark Schiffman1, Mark E. Sherman8, Rosemary E. Zuna6, Jason Mitchell1, Xijun Zhang1, Joseph F. Boland1, Anil K. Chaturvedi1, S. Terence Dunn6, Michael A. Newton7, Paul Ahlquist3,4,5,9, Sophia S. Wang10 and Nicolas Wentzensen1
PLOS Genetics | 2014
Alexander Pemov; Heejong Sung; Paula L. Hyland; Jennifer L. Sloan; Sarah L. Ruppert; Andrea Baldwin; Joseph Boland; Sara Bass; Hyo Jung Lee; Xijun Zhang; Nisc Comparative Sequencing Program; James C. Mullikin; Brigitte C. Widemann; Alexander F. Wilson; Douglas R. Stewart
Neurofibromatosis type 1 (NF1) is an autosomal dominant, monogenic disorder of dysregulated neurocutaneous tissue growth. Pleiotropy, variable expressivity and few NF1 genotype-phenotype correlates limit clinical prognostication in NF1. Phenotype complexity in NF1 is hypothesized to derive in part from genetic modifiers unlinked to the NF1 locus. In this study, we hypothesized that normal variation in germline gene expression confers risk for certain phenotypes in NF1. In a set of 79 individuals with NF1, we examined the association between gene expression in lymphoblastoid cell lines with NF1-associated phenotypes and sequenced select genes with significant phenotype/expression correlations. In a discovery cohort of 89 self-reported European-Americans with NF1 we examined the association between germline sequence variants of these genes with café-au-lait macule (CALM) count, a tractable, tumor-like phenotype in NF1. Two correlated, common SNPs (rs4660761 and rs7161) between DPH2 and ATP6V0B were significantly associated with the CALM count. Analysis with tiled regression also identified SNP rs4660761 as significantly associated with CALM count. SNP rs1800934 and 12 rare variants in the mismatch repair gene MSH6 were also associated with CALM count. Both SNPs rs7161 and rs4660761 (DPH2 and ATP6V0B) were highly significant in a mega-analysis in a combined cohort of 180 self-reported European-Americans; SNP rs1800934 (MSH6) was near-significant in a meta-analysis assuming dominant effect of the minor allele. SNP rs4660761 is predicted to regulate ATP6V0B, a gene associated with melanosome biology. Individuals with homozygous mutations in MSH6 can develop an NF1-like phenotype, including multiple CALMs. Through a multi-platform approach, we identified variants that influence NF1 CALM count.