Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph Burnett is active.

Publication


Featured researches published by Joseph Burnett.


Journal of Materials Chemistry B | 2014

Highly crystallized iron oxide nanoparticles as effective and biodegradable mediators for photothermal cancer therapy

Hongwei Chen; Joseph Burnett; Fuxiang Zhang; Jiaming Zhang; Hayley J. Paholak; Duxin Sun

We report that highly crystallized iron oxide nanoparticles (HCIONPs) made by thermal decomposition and further coating with a polysiloxane-containing copolymer can be used as effective mediators for photothermal therapy. Irradiation of a HCIONP solution containing 0.5 mg mL-1 Fe, for instance, with an 885 nm diode laser at a power of 2.5 W cm-2, induces a temperature increase of 33 °C from room temperature, while water produced only a ∼3 °C increase as the control. In vivo studies are further evaluated for effective photothermal therapy using the as-prepared HCIONPs. Benefiting from the great antibiofouling property of the polymer coating and minimized hydrodynamic size (whole particle size: 24 nm), the nanoparticles intravenously administered to SUM-159 tumor-bearing mice can effectively accumulate within the tumor tissue (5.3% of injection dose) through the enhanced permeability and retention effect. After applying the same laser conditions to irradiate the tumors, complete tumor regression is observed within three weeks without disease relapse over the course of three months. Conversely, control mice exhibit continuous tumor growth leading to animal mortality within four weeks. To better understand the photothermal effect of HCIONPs and potentially improve their photothermal efficiency, we compare their photothermal effect and crystal structures with commercially available magnetic nanoparticles. Our data show that after applying the same laser to commercially available magnetic nanoparticles from FeREX at the same iron concentration, the temperature is only increased by 7.4 °C. We further use synchrotron-XRD and high-resolution TEM to compare the crystal structures of both magnetic nanoparticles. The data show that both magnetic nanoparticles are Fe3O4 but as-prepared HCIONPs are highly crystalline and have preferred lattice plane orientations, which may be the cause of their enhanced photothermal efficiency. Taken together, these data suggest that HCIONPs, with unique lattice orientations and small size as well as antifouling coating, can be used as promising mediators for photothermal cancer therapy.


Journal of Biological Chemistry | 2010

Split Renilla Luciferase Protein Fragment-assisted Complementation (SRL-PFAC) to Characterize Hsp90-Cdc37 Complex and Identify Critical Residues in Protein/Protein Interactions

Yiqun Jiang; Denzil Bernard; Yanke Yu; Yehua Xie; Tao Zhang; Yanyan Li; Joseph Burnett; Xueqi Fu; Shaomeng Wang; Duxin Sun

Hsp90 requires cochaperone Cdc37 to load its clients to the Hsp90 superchaperone complex. The purpose of this study was to utilize split Renilla luciferase protein fragment-assisted complementation (SRL-PFAC) bioluminescence to study the full-length human Hsp90-Cdc37 complex and to identity critical residues and their contributions for Hsp90/Cdc37 interaction in living cells. SRL-PFAC showed that full-length human Hsp90/Cdc37 interaction restored dramatically high luciferase activity through Hsp90-Cdc37-assisted complementation of the N and C termini of luciferase (compared with the set of controls). Immunoprecipitation confirmed that the expressed fusion proteins (NRL-Hsp90 and Cdc37-CRL) preserved their ability to interact with each other and also with native Hsp90 or Cdc37. Molecular dynamic simulation revealed several critical residues in the two interaction patches (hydrophobic and polar) at the interface of Hsp90/Cdc37. Mutagenesis confirmed the critical residues for Hsp90-Cdc37 complex formation. SRL-PFAC bioluminescence evaluated the contributions of these critical residues in Hsp90/Cdc37 interaction. The results showed that mutations in Hsp90 (Q133A, F134A, and A121N) and mutations in Cdc37 (M164A, R167A, L205A, and Q208A) reduced the Hsp90/Cdc37 interaction by 70–95% as measured by the resorted luciferase activity through Hsp90-Cdc37-assisted complementation. In comparison, mutations in Hsp90 (E47A and S113A) and a mutation in Cdc37 (A204E) decreased the Hsp90/Cdc37 interaction by 50%. In contrast, mutations of Hsp90 (R46A, S50A, C481A, and C598A) and mutations in Cdc37 (C54S, C57S, and C64S) did not change Hsp90/Cdc37 interactions. The data suggest that single amino acid mutation in the interface of Hsp90/Cdc37 is sufficient to disrupt its interaction, although Hsp90/Cdc37 interactions are through large regions of hydrophobic and polar interactions. These findings provides a rationale to develop inhibitors for disruption of the Hsp90/Cdc37 interaction.


Current Drug Targets | 2012

Targeting cancer stem cells with natural products.

Joseph Burnett; Bryan Newman; Duxin Sun

The cancer stem cell (CSC) hypothesis presents a fundamentally different paradigm for cancer treatment. CSCs reflect a small fraction of tumor initiating cells capable of sustained self-renewal and differentiation to form the heterogeneous tumor bulk. In order to cure cancer, it is necessary to eliminate cancer stem cells in addition to differentiated cancer cells to decrease metastasis, reduce recurrence, and improve patient survival. In this article, we review cancer stem cell signaling pathways, including Wnt, Hedgehog, and Notch, as well as interactions of CSCs with the tumor microenvironment. We also review methods to isolate CSCs and demonstrate therapeutic efficacy of natural products to modulate these signaling pathways for eliminating CSCs.


Scientific Reports | 2015

Trastuzumab resistance induces EMT to transform HER2+ PTEN− to a triple negative breast cancer that requires unique treatment options

Joseph Burnett; Hasan Korkaya; Maria Ouzounova; Hui Jiang; Sarah J. Conley; Bryan Newman; Lichao Sun; Jamie Connarn; Ching Shih Chen; Ning Zhang; Max S. Wicha; Duxin Sun

Although trastuzumab is an effective treatment in early stage HER2+ breast cancer the majority of advanced HER2+ breast cancers develop trastuzumab resistance, especially in the 40% of breast cancers with loss of PTEN. However, HER2+ breast cancer patients continue to receive trastuzumab regardless PTEN status and the consequence of therapy in these patients is unknown. We demonstrate that continued use of trastuzumab in HER2+ cells with loss of PTEN induces the epithelial-mesenchymal transition (EMT) and transform HER2+ to a triple negative breast cancer. These transformed cells exhibited mesenchymal morphology and gene expression markers, while parent HER2+ cells showed epithelial morphology and markers. The transformed cells exhibited loss of dependence on ERBB family signaling (such as HER2, HER3, HER4, BTC, HRG, EGF) and reduced estrogen and progesterone receptors. Continued use of trastuzumab in HER2+ PTEN− cells increased the frequency of cancer stem cells (CSCs) and metastasis potential. Strikingly, parental HER2+ cells and transformed resistant cells respond to treatment differently. Transformed resistant cells were sensitive to chemical probe (sulforaphane) through inhibition of IL-6/STAT3/NF-κB positive feedback loop whereas parental HER2+ cells did not respond. This data suggests that trastuzumab resistance in HER2+ PTEN− breast cancer induces EMT and subtype switching, which requires unique treatment options.


Breast Cancer Research and Treatment | 2015

CRLX101, an investigational camptothecin-containing nanoparticle-drug conjugate, targets cancer stem cells and impedes resistance to antiangiogenic therapy in mouse models of breast cancer

Sarah J. Conley; Trenton L. Baker; Joseph Burnett; Rebecca Theisen; Douglas Lazarus; Christian G. Peters; Shawn G. Clouthier; Scott Eliasof; Max S. Wicha

Antiangiogenic therapies inhibit the development of new tumor blood vessels, thereby blocking tumor growth. Despite the advances in developing antiangiogenic agents, clinical data indicate that these drugs have limited efficacy in breast cancer patients. Tumors inevitably develop resistance to antiangiogenics, which is attributed in part to the induction of intra-tumoral hypoxia and stabilization of hypoxia-inducible factor 1α (HIF-1α), a transcription factor that promotes tumor angiogenesis, invasion, metastasis, and cancer stem cell (CSC) self-renewal. Here, we tested whether inhibiting HIF-1α can reverse the stimulatory effects of antiangiogenic-induced hypoxia on breast CSCs. Breast cancer cells grown under hypoxic conditions were treated with the dual topoisomerase-1 (TOPO-1) and HIF-1α inhibitor camptothecin and assessed for their CSC content. In a preclinical model of breast cancer, treatment with bevacizumab was compared to the combination treatment of bevacizumab with CRLX101, an investigational nanoparticle-drug conjugate with a camptothecin payload or CRLX101 monotherapy. While exposure to hypoxia increased the number of breast CSCs, treatment with CPT blocked this effect. In preclinical mouse models, concurrent administration of CRLX101 impeded the induction of both HIF-1α and CSCs in breast tumors induced by bevacizumab treatment. Greater tumor regression and delayed tumor recurrence were observed with the combination of these agents compared to bevacizumab alone. Tumor reimplantation experiments demonstrated that the combination therapy effectively targets the CSC populations. The results from these studies support the combined administration of dual TOPO-1- and HIF-1α-targeted agents like CRLX101 with antiangiogenic agents to increase the efficacy of these treatments.


Oncotarget | 2016

Novel cancer stem cell targets during epithelial to mesenchymal transition in PTEN-deficient trastuzumab-resistant breast cancer.

Lichao Sun; Joseph Burnett; Mari Gasparyan; Fangying Xu; Hui Jiang; Chang-Ching Lin; Ila Myers; Hasan Korkaya; Yajing Liu; Jamie Connarn; Huining He; Ning Zhang; Max S. Wicha; Duxin Sun

Continued use of trastuzumab in PTEN-deficient HER2+ breast cancer induces the epithelial-to-mesenchymal transition (EMT), transforms HER2+ to triple negative breast cancer, and expands breast cancer stem cells (BCSCs). Using cancer cell lines with two distinct states, epithelial and mesenchymal, we identified novel targets during EMT in PTEN-deficient trastuzumab-resistant breast cancer. Differential gene expression and distinct responses to a small molecule in BT474 (HER2+ trastuzumab-sensitive) and the PTEN-deficient trastuzumab-resistant derivative (BT474-PTEN-LTT) provided the selection tools to identify targets during EMT. siRNA knockdown and small molecule inhibition confirmed MEOX1 as one of the critical molecular targets to regulate both BCSCs and mesenchymal-like cell proliferation. MEOX1 was associated with poor survival, lymph node metastasis, and stage of breast cancer patients. These findings suggest that MEOX1 is a clinically relevant novel target in BCSCs and mesenchymal-like cancer cells in PTEN-deficient trastuzumab resistant breast cancer and may serve as target for future drug development.


Biomedical Optics Express | 2013

Photoacoustic microscopy: a potential new tool for evaluation of angiogenesis inhibitor

Sung Liang Chen; Joseph Burnett; Duxin Sun; Xunbin Wei; Zhixing Xie; Xueding Wang

The feasibility of photoacoustic microscopy (PAM) for evaluation of angiogenesis inhibitor was investigated on a chick embryo model in vivo. Different concentrations of the angiogenesis inhibitor, Sunitinib, were applied to the chorioallantoic membrane (CAM) of the chick embryos. Imaging of microvasculature in embryo CAMs was acquired using a laser-scanning PAM system; while the optical microscopy (OM) capturing the microvascular images of the same set of CAMs for comparison served as a gold standard for validating the results from PAM. The microvascular density as a function of applied Sunitinib concentration has been quantified in both PAM and OM images. The results from these two modalities have a good agreement, suggesting that PAM could provide an unbiased quantification of microvascular density for objective evaluation of anti-angiogenesis medication. In comparison with conventional OM which enables only two-dimensional enface imaging, PAM is capable of three-dimensional analysis of microvessels, including not only morphology but also functions, as demonstrated in part by the imaging result on a canine bladder model. The emerging PAM technique shows promise to be used in clinical and preclinical settings for comprehensive and objective evaluation of anti-angiogenesis medications.


ACS Applied Materials & Interfaces | 2015

Facile Fabrication of Near-Infrared-Resonant and Magnetic Resonance Imaging-Capable Nanomediators for Photothermal Therapy

Hongwei Chen; Xiaoqing Ren; Hayley J. Paholak; Joseph Burnett; Feng Ni; Xiaoling Fang; Duxin Sun

Although many techniques exist for fabricating near-infrared (NIR)-resonant and magnetic resonance imaging (MRI)-capable nanomediators for photothermal cancer therapy, preparing them in an efficient and scalable process remains a significant challenge. In this report, we exploit one-step siloxane chemistry to facilely conjugate NIR-absorbing satellites onto a well-developed polysiloxane-containing polymer-coated iron oxide nanoparticle (IONP) core to generate dual functional core-satellite nanomediators for photothermal therapy. An advantage of this nanocomposite design is the variety of potential satellites that can be simply attached to impart NIR resonance, which we demonstrate using NIR-resonant gold sulfide nanoparticles (Au2SNPs) and the NIR dye IR820 as two example satellites. The core-satellite nanomediators are fully characterized by using absorption spectra, dynamic light scattering, ζ potential measurements, and transmission electron microscopy. The enhanced photothermal effect under the irradiation of NIR laser light is identified through in vitro solutions and in vivo mice studies. The MRI capabilities as contrast agents are demonstrated in mice. Our data suggest that polysiloxane-containing polymer-coated IONPs can be used as a versatile platform to build such dual functional nanomediators for translatable, MRI-guided photothermal cancer therapy.


Journal of Cancer | 2016

CPA4 is a Novel Diagnostic and Prognostic Marker for Human Non-Small-Cell Lung Cancer.

Lichao Sun; Yipeng Wang; Hebao Yuan; Joseph Burnett; Jian Pan; Zhihua Yang; Yuliang Ran; Ila Myers; Duxin Sun

Background. Carboxypeptidase A4 (CPA4) belongs to a member of the metallocarboxypeptidase family, and its expression in lung cancer samples and clinical significance are still not investigated until now. In this study, we aimed to evaluate the level of CPA4 in non-small-cell lung cancer (NSCLC) samples and correlate its level with clinical outcome. Methods. CPA4 gene expression in lung cancer tissues were analyzed by using the Oncomine database (www.oncomine.org). The expression of CPA4, Survivin and VEGF in lung cancer and adjacent normal tissues were evaluated by IHC using the corresponding primary antibodies on two different commercial tissue arrays (Shanghai Biochip Co., Ltd., Shanghai, China). Their levels in serum were determined by using commercial human enzyme-linked immunosorbent assay kits. We also examined their relations to clinicopathologic parameters, and explored the diagnostic and prognostic value in NSCLC. Results. We identified an elevation of CPA4 in mRNA level and gene amplification in lung cancer tissues in comparison to normal lung tissues. High CPA4 expression was observed in 120/165 (72.7%) NSCLC samples, and significantly correlated with Tumor size, Depth of invasion, Lymph Node Metastasis, Stage, VEGF level and Survivin level. High CPA4 expression is associated with poor prognosis of NSCLC patients. Multivariable Cox regression analysis demonstrated that CPA4 expression was an independent prognostic factor. Furthermore, serum CPA4 level was also significantly higher in NSCLC patients than in healthy controls. Logistic regression analysis revealed that serum CPA4 and CYFRA21-1 level were the significant parameters for detecting NSCLC. Receiver operating characteristic curves (ROC) in NSCLC patients versus normal people yielded the optimal cut-off value was 2.70 ng/ml for CPA4 and 19 ng/ml for CYFRA21-1, respectively. The area under ROC curve (AUC) was 0.830 for the combination of the two tumor markers. Conclusion. Our results demonstrated that overexpression of CPA4 in NSCLC is associated with an unfavorable prognosis, and serum CPA4 level combining with serum CYFRA21-1 level could be used to aid early detection of NSCLC.


Journal of Cancer | 2017

Association between expression of carboxypeptidase 4 and stem cell markers and their clinical significance in liver cancer development

Lichao Sun; Chunguang Guo; Joseph Burnett; Jian Pan; Zhihua Yang; Yuliang Ran; Duxin Sun

The development of liver cancer would undergo a sequential progression from chronic inflammatory liver disease, cirrhosis to neoplasia. During these pathophysiological changes, abnormal liver microenvironment might induce the hepatocytes to die, abnormally proliferate and initiate cancer stem cells. Metallocarboxypeptidases (MCPs) involved in multiple biological functions including inflammation, fibrosis and stem cell niche formation. This study aimed to evaluate the expression of carboxypeptidase 4 (CPA4) in hepatitis, liver cirrhosis and liver cancer tissues, and revealed its clinical significance in liver cancer progression. We firstly found that the CPA4 levels in tissues were significantly higher in liver cancer patients than those in other three groups. Then, elevated levels of CPA4 was observed in 57/100 (57%) liver cancer samples, and significantly correlated with Grade and Stage. We also identified a significant positive correlation between aberrant elevation of CPA4 and overexpression of stem cell markers including CD90, AFP and CD34 with follow-up data (n=100). Further Kaplan-Meier analysis confirmed that high levels of CPA4 and CD90 were significant predictors of poor overall survival. Multivariate Cox regression model showed that CPA4 was an independent prognostic factor for patients with liver cancer. This study demonstrated for the first time that high CPA4 expression was closely correlated with hepatocarcinogenesis, and might be used as an independent poor prognostic factor in liver cancer.

Collaboration


Dive into the Joseph Burnett's collaboration.

Top Co-Authors

Avatar

Duxin Sun

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hasan Korkaya

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Hebao Yuan

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Ila Myers

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge