Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph C. LaManna is active.

Publication


Featured researches published by Joseph C. LaManna.


Journal of Biological Chemistry | 2005

Hypoxia-inducible Factor Prolyl 4-Hydroxylase Inhibition A TARGET FOR NEUROPROTECTION IN THE CENTRAL NERVOUS SYSTEM

Ambreena Siddiq; Issam A. Ayoub; Juan C. Chavez; Leila R. Aminova; Sapan Shah; Joseph C. LaManna; Stephanie M. Patton; James R. Connor; Robert A. Cherny; Irene Volitakis; Ashley I. Bush; Ingrid Langsetmo; Todd Seeley; Volkmar Gunzler; Rajiv R. Ratan

Hypoxia-inducible factor (HIF) prolyl 4-hydroxylases are a family of iron- and 2-oxoglutarate-dependent dioxygenases that negatively regulate the stability of several proteins that have established roles in adaptation to hypoxic or oxidative stress. These proteins include the transcriptional activators HIF-1α and HIF-2α. The ability of the inhibitors of HIF prolyl 4-hydroxylases to stabilize proteins involved in adaptation in neurons and to prevent neuronal injury remains unclear. We reported that structurally diverse low molecular weight or peptide inhibitors of the HIF prolyl 4-hydroxylases stabilize HIF-1α and up-regulate HIF-dependent target genes (e.g. enolase, p21waf1/cip1, vascular endothelial growth factor, or erythropoietin) in embryonic cortical neurons in vitro or in adult rat brains in vivo. We also showed that structurally diverse HIF prolyl 4-hydroxylase inhibitors prevent oxidative death in vitro and ischemic injury in vivo. Taken together these findings identified low molecular weight and peptide HIF prolyl 4-hydroxylase inhibitors as novel neurological therapeutics for stroke as well as other diseases associated with oxidative stress.


Molecular Brain Research | 1998

Vascular endothelial growth factor in Alzheimer's disease and experimental cerebral ischemia

Rajesh N. Kalaria; Dawn L. Cohen; Daniel R. D. Premkumar; Sukriti Nag; Joseph C. LaManna; Lust Wd

Several growth factors have been implicated in the pathogenesis of Alzheimers disease (AD). We considered whether the vascular endothelial growth factor (VEGF) is involved in the vascular pathology associated with most cases of AD. We observed enhanced VEGF immunoreactivity in clusters of reactive astrocytes in the neocortex of subjects with AD compared to elderly controls. VEGF reactivity was also noted in walls of many large intraparenchymal vessels and diffuse perivascular deposits. In addition, we established that astrocytic and perivascular VEGF reactivity was enhanced in cerebral cortex of rats subjected to cerebral ischemia and to chronic hypoxia; experimental conditions known to be associated with astrogliosis and angiogenesis. We suggest the increased VEGF reactivity, also observed in infarcted human brain tissue, implicates compensatory mechanisms to counter insufficient vascularity or reduced perfusion (oligemia) apparent in AD.


Brain Research | 1975

Responses of electrical potential, potassium levels, and oxidative metabolic activity of the cerebral neocortex of cats

E.W Lothman; Joseph C. LaManna; G. Cordingley; Myron Rosenthal; George G. Somjen

We measured simultaneously the oxidative metabolic activity, monitored as the tissue fluorescence attribute to intramitochondrial NADH, the extracellular potassium level with ion-selective microelectrodes, and the focal extracellular electrical potential, of one site in intact cerebral cortex of cats. When the cerebral was stimulated by trains of repeated electric pulses applied either directly to its surface or to an afferent pathway, the corrected cortical fluorescence (F-R) declined indicating oxidation of NADH, the activity of extracellular potassium [K+]o increased, and the extracellular potential (Vec) shifted in the negative direction. When mild to moderate stimuli not exceeding 10-15 sec in duration were used, a 3-fold correlation was found between these three variables. The regression of F-R over either Vec, or over log [K+]o had a positive ordinal intercept. The results are in agreement with earlier suggestions 4,24,25,43,45,46 that (a) much but not all the oxidative metabolic response of cortex to electrical stimulation is expended in restoring disturbed ion balance; and (b) that sustained shifts of potential (SP) in response to repetitive electrical stimulation are generated by glia cells depolarized by excess potassium. The magnitude of SP shifts associated with a given elevation of [k+]o are smaller in cerebral cortex than in spinal cord48,49. The correlation of F-R with [K+]o breaks down when pathologic processes of either seizure activity or spreading depression set in. During paroxysmal activity [K+]o tends to remain confined below 10-12 mM, a level observed in non-convulsing cortex as well, but oxidation of NADH progresses beyond that seen in non-convulsing cortex as well, but oxidation of NADH progresses beyond that seen in non-convulsing tissue. This observation is hard to reconcile with the suggestion that excess potassium is a factor in the generation of seizures, at least of the type observed in this study. When [K+]o levels exceeded 10-12 mM, spreading depression invariably followed at least under the unanesthetized condition in these experiments. During spreading depression [K+]o levels rose to exceed 30 mM, sometimes 80 mM. NADH was oxidized during spreading depression to a level comparable to that seen in seizures. The observations are compatible with the suggestion13 that spreading depression occurs whenever the release of potassium into extracellular fluid is overloading its clearance therefrom.


Journal of Biological Chemistry | 2000

The Role of Mitochondria in the Regulation of Hypoxia-inducible Factor 1 Expression during Hypoxia

Faton Agani; Paola Pichiule; Juan C. Chavez; Joseph C. LaManna

Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric transcription factor that regulates transcriptional activation of several genes responsive to the lack of oxygen, including erythropoietin, vascular endothelial growth factor, glycolytic enzymes, and glucose transporters. Because the involvement of mitochondria in the regulation of HIF-1 has been postulated, we tested the effects of mitochondrial electron transport chain deficiency on HIF-1 protein expression and DNA binding in hypoxic cells. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) inhibits electron transport chain at the level of complex I. MPTP is first converted to a pharmacologically active metabolite 1-methyl-4-phenylpyridinum (MPP+). MPP+ effectively inhibited both complex I activity and hypoxic accumulation of HIF-1α protein in dopaminergic cell lines PC12 and CATH.a. In C57BL/6 mice, a single dose of MPTP (15 mg/kg, intraperitoneal) inhibited complex I activity and HIF-1α protein accumulation in the striatum in response to a subsequent hypoxic challenge (8% O2, 4 h). In a genetic model system, 40% complex I-inhibited human-ape xenomitochondrial cybrids, hypoxic induction of HIF-1α was severely reduced, and HIF-1 DNA binding was diminished. However, succinate, the mitochondrial complex II substrate, restored the hypoxic response in cybrid cells, suggesting that electron transport chain activity is required for activation of HIF-1. A partial complex I deficiency and a mild reduction in intact cell oxygen consumption effectively prevented hypoxic induction of HIF-1α protein.


The Journal of Experimental Biology | 2004

Structural and functional adaptation to hypoxia in the rat brain

Joseph C. LaManna; Juan C. Chavez; Paola Pichiule

SUMMARY Chronic exposure to a hypoxic environment leads to structural and functional adaptations in the rat brain. One significant adaptation is a decrease in intercapillary distances through a near doubling of the capillary density, which begins after about 1 week of hypoxic exposure and is completed by 3 weeks. Hypoxic angiogenesis is controlled by activation of downstream genes by Hypoxia Inducible Factor-1 and Angiopoietin-2. The processes that increase capillary density are reversible upon restoration of the ambient oxygen concentration. Capillary regression, which also occurs over a 3-week period, is accomplished through activation of apoptosis. The implication from these observations is that the brain naturally functions in a low, but controlled, oxygen environment. Acute imbalances in oxygen delivery and metabolic demand are addressed through changes in blood flow; persistent imbalances activate mechanisms that adjust capillary density. The mechanisms that control these processes decline with age.


Brain Pathology | 2006

The role of oxidative stress in the pathophysiology of cerebrovascular lesions in Alzheimer's disease.

Gjumrakch Aliev; Mark A. Smith; Dilara Seyidova; Maxwell Lewis Neal; Bruce T. Lamb; Akihiko Nunomura; Eldar Gasimov; Harry V. Vinters; George Perry; Joseph C. LaManna; Robert P. Friedland

Alzheimers disease (AD) and stroke are two leading causes of age‐associated dementia. A rapidly growing body of evidence indicates that increased oxidative stress from reactive oxygen radicals is associated with the aging process and age‐related degenerative disorders such as atherosclerosis, ischemia/reperfusion, arthritis, stroke, and neurodegenerative diseases. New evidence has also indicated that vascular lesions are a key factor in the development of AD. This idea is based on a positive correlation between AD and cardiovascular and cerebrovascular diseases such as arterio‐ and atherosclerosis and ischemia/reperfusion injury. In this review we consider recent evidence supporting the existence of an intimate relationship between oxidative stress and vascular lesions in the pathobiology of AD. We also consider the opportunities for therapeutic interventions based on the molecular pathways involved with these causal relationships.


Journal of Biological Chemistry | 2004

Hypoxic regulation of angiopoietin-2 expression in endothelial cells

Paola Pichiule; Juan C. Chavez; Joseph C. LaManna

Exposure of endothelial cells to hypoxia-induced angiopoietin-2 (Ang2) expression. The increase in Ang2 mRNA levels occurred by transcriptional regulation and by post-transcriptional increase in mRNA stability. Induction of Ang2 mRNA resulted in an increase of intracellular and secreted Ang2 protein levels. Since the transcriptional regulation of several genes involved in angiogenesis during hypoxia is mediated by hypoxia-inducible factor-1 (HIF-1), it was conceivable that Ang2 expression might be regulated by the same oxygen-dependent mechanism. However, our data showed that pharmacological HIF inducers, CoCl2 and DFO, did not affect Ang2 expression. Moreover, HIF-1-deficient hepatoma cell (Hepa1 c4) and its wild-type counterpart (Hepa1 c1c4) up-regulates Ang2 during hypoxia. These results indicated that hypoxia-driven Ang2 expression may be independent of the HIF pathway. Using neutralizing VEGF antibody or pharmacological inhibitors of VEGF receptors, we showed that hypoxia-induced VEGF participates but could not account completely for Ang2 expression during hypoxia. In addition, hypoxia elicited an increase of cyclooxygenase-2 (COX-2) expression and a parallel increase in prostanglandin E2 (PGE2) and prostacyclin (PGI2) production. COX-2 inhibitors decreased the hypoxic induction of Ang2 and the hypoxic induction of PGE2 and PGI2 in a dose-dependent manner. Similarly, COX-2 but not COX-1 antisense treatment decreased hypoxic induction of Ang2 expression, and this effect was reversed by exogenous PGE2. Finally, exogenous PGE2 and PGI2 were able to stimulate Ang2 under normoxic conditions. These findings suggest that COX-2-dependent prostanoids may play an important role in the regulation of hypoxia-induced Ang2 expression.


Journal of Bone and Joint Surgery, American Volume | 2003

Sustained spinal cord compression. Part I: Time-dependent effect on long-term pathophysiology

Gregory D. Carlson; Carey D. Gorden; Heather S. Oliff; Jay J. Pillai; Joseph C. LaManna

Background: The objective of this study is to determine whether there is a relationship between the duration of sustained spinal cord compression and the extent of spinal cord injury and the capacity for functional recovery after decompression.Methods: Sixteen dogs underwent sustained spinal cord compression for thirty or 180 minutes. The cords were compressed with use of a loading device with a hydraulic piston. A pressure transducer was attached to the surface of the piston, which transmitted real-time spinal cord interface pressures to a data-acquisition system. Somatosensory evoked potentials were monitored during a sixty-minute recovery period as well as at twenty-eight days after the injury. Functional motor recovery was judged throughout a twenty-six-day period after the injury with use of a battery of motor tasks. The volume of the lesion and damage to the tissue were assessed with both magnetic resonance imaging and histological analysis.Results: Sustained spinal cord compression was associated with a gradual decline in interface pressure. Despite this, there was continuous decline in the amplitude of the somatosensory evoked potentials, which did not return until the cord was decompressed. Within one hour after the decompression, the dogs in the thirty-minute-compression group had recovery of somatosensory evoked potentials, but no animal had such recovery in the 180-minute group. Recovery of the somatosensory evoked potentials in the thirty-minute group was sustained over the twenty-eight days after the injury. Motor tests demonstrated rapid recovery of hindlimb motor function in the thirty-minute group, but there was considerable impairment in the 180-minute group. Within two weeks after the injury, balance, cadence, stair-climbing, and the ability to walk up an inclined plane were significantly better in the thirty-minute group than in the 180-minute group. The longer duration of compression produced lesions of significantly greater volume, which corresponded to the long-term functional outcome.Conclusions: The relatively rapid viscoelastic relaxation of the spinal cord during the early phase of sustained cord compression suggests that there are mechanisms of secondary injury that are linked to tissue displacement. Longer periods of displacement allow propagation of the secondary injury process, resulting in a lack of recovery of somatosensory evoked potentials, limited functional recovery, and more extensive tissue damage.Clinical Relevance: The findings underscore the importance of timely decompression to improve long-term functional recovery after spinal cord injury.


Brain Research | 1988

Determination of rat cerebral cortical blood volume changes by capillary mean transit time analysis during hypoxia, hypercapnia and hyperventilation.

Richard P. Shockley; Joseph C. LaManna

Changes in cerebral blood volume due to augmented or diminished numbers of blood-perfused capillaries can be studied in small animals by optical methods. Capillary mean transit time was determined by detection of the passage of a hemodilution bolus through a region of the parietal cerebral cortical surface, using a reflectance spectrophotometer through a small craniotomy in chloral hydrate-anesthetized rats. Local cerebral blood flow was determined in the same region by the butanol indicator-fractionation method. Blood volume was calculated from the product of blood flow and transit time. Normoxic, normocapnic values for these variables were blood flow = 144 ml/100 g/min; mean transit time = 1.41 s; and blood volume = 3.4 ml/100 g. Mean transit time reached a minimum (1.1 s) with moderate hypoxia or hypercapnia. Combined hypoxia and hypercapnia did not result in any further decrease in mean transit time although blood flow was much higher than either hypoxia or hypercapnia alone. The maximum blood volume recorded during hypercapnic hypoxia (12.1 ml/100 g) was 3.6 times greater than that at normoxic normocapnia, which suggests that under control conditions in the anesthetized rat considerably less than 100% of the cerebral capillaries were actively perfusing the tissue. These studies demonstrate that optical methods can be used to quantitatively measure blood volume. The data suggest that capillary recruitment is a physiologically significant phenomenon in rat cerebral cortex.


Journal of Cerebral Blood Flow and Metabolism | 2008

Neuroprotection in diet-induced ketotic rat brain after focal ischemia.

Michelle A. Puchowicz; Jennifer Zechel; Jose Valerio; Douglas Emancipator; Kui Xu; Svetlana Pundik; Joseph C. LaManna; W. David Lust

Neuroprotective properties of ketosis may be related to the upregulation of hypoxia inducible factor (HIF)-1α, a primary constituent associated with hypoxic angiogenesis and a regulator of neuroprotective responses. The rationale that the utilization of ketones by the brain results in elevation of intracellular succinate, a known inhibitor of prolyl hydroxylase (the enzyme responsible for the degradation of HIF-1α) was deemed as a potential mechanism of ketosis on the upregulation of HIF-1α. The neuroprotective effect of diet-induced ketosis (3 weeks of feeding a ketogenic diet), as pretreatment, on infarct volume, after reversible middle cerebral artery occlusion (MCAO), and the upregulation of HIF-1α were investigated. The effect of β-hydroxybutyrate (BHB), as a pretreatment, via intraventricular infusion (4 days of infusion before stroke) was also investigated following MCAO. Levels of HIF-1α and Bcl-2 (anti-apoptotic protein) proteins and succinate content were measured. A 55% or 70% reduction in infarct volume was observed with BHB infusion or diet-induced ketosis, respectively. The levels of HIF-1α and Bcl-2 proteins increased threefold with diet-induced ketosis; BHB infusions also resulted in increases in these proteins. As hypothesized, succinate content increased by 55% with diet-induced ketosis and fourfold with BHB infusion. In conclusion, the biochemical link between ketosis and the stabilization of HIF-1α is through the elevation of succinate, and both HIF-1α stabilization and Bcl-2 upregulation play a role in ketone-induced neuroprotection in the brain.

Collaboration


Dive into the Joseph C. LaManna's collaboration.

Top Co-Authors

Avatar

Kui Xu

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michelle A. Puchowicz

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Sami I. Harik

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George Perry

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Mark A. Smith

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Paola Pichiule

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

W. David Lust

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Xiaoyan Sun

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge