Joseph Caruana
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joseph Caruana.
The Astrophysical Journal | 2015
R. J. Bouwens; G. D. Illingworth; P. A. Oesch; Joseph Caruana; Benne W. Holwerda; R. Smit; Stephen M. Wilkins
Thomson optical depth tau measurements from Planck provide new insights into the reionization of the universe. In pursuit of model-independent constraints on the properties of the ionising sources, we determine the empirical evolution of the cosmic ionizing emissivity. We use a simple two-parameter model to map out the evolution in the emissivity at z>~6 from the new Planck optical depth tau measurements, from the constraints provided by quasar absorption spectra and from the prevalence of Ly-alpha emission in z~7-8 galaxies. We find the redshift evolution in the emissivity dot{N}_{ion}(z) required by the observations to be d(log Nion)/dz=-0.15(-0.11)(+0.08), largely independent of the assumed clumping factor C_{HII} and entirely independent of the nature of the ionising sources. The trend in dot{N}_{ion}(z) is well-matched by the evolution of the galaxy UV-luminosity density (dlog_{10} rho_UV/dz=-0.11+/-0.04) to a magnitude limit >~-13 mag, suggesting that galaxies are the sources that drive the reionization of the universe. The role of galaxies is further strengthened by the conversion from the UV luminosity density rho_UV to dot(N)_{ion}(z) being possible for physically-plausible values of the escape fraction f_{esc}, the Lyman-continuum photon production efficiency xi_{ion}, and faint-end cut-off
Monthly Notices of the Royal Astronomical Society | 2011
Stephen M. Wilkins; Andrew J. Bunker; Elizabeth R. Stanway; Silvio Lorenzoni; Joseph Caruana
M_{lim}
Astronomy and Astrophysics | 2015
B. Guiderdoni; C. Herenz; Tim-Oliver Husser; Sebastian Kamann; Josephine Kerutt; Wolfram Kollatschny; D. Krajnovic; S. J. Lilly; Thomas P. K. Martinsson; L. Michel-Dansac; V. Patrício; Joop Schaye; Maryam Shirazi; Kurt T. Soto; G. Soucail; M. Steinmetz; Tanya Urrutia; Peter M. Weilbacher; T. Zeeuw; Roland Bacon; Jarle Brinchmann; Johan Richard; T. Contini; Alyssa B. Drake; Marijn Franx; S. Tacchella; J. Vernet; Lutz Wisotzki; Jeremy Blaizot; N. Bouché
to the luminosity function. Quasars/AGN appear to match neither the redshift evolution nor normalization of the ionizing emissivity. Based on the inferred evolution in the ionizing emissivity, we estimate that the z~10 UV-luminosity density is 8(-4)(+15)x lower than at
Monthly Notices of the Royal Astronomical Society | 2014
Joseph Caruana; Andrew J. Bunker; Stephen M. Wilkins; Elizabeth R. Stanway; Silvio Lorenzoni; M. J. Jarvis; Holly Ebert
z~6, consistent with the observations. The present approach of contrasting the inferred evolution of the ionizing emissivity with that of the galaxy UV luminosity density adds to the growing observational evidence that faint, star-forming galaxies drive the reionization of the universe.
Monthly Notices of the Royal Astronomical Society | 2012
Joseph Caruana; Andrew J. Bunker; Stephen M. Wilkins; Elizabeth R. Stanway; Mark Lacy; M. J. Jarvis; Silvio Lorenzoni; Samantha Hickey
The acquisition of deep near-IR imaging with Wide Field Camera 3 on the Hubble Space Telescope has provided the opportunity to study the very high redshift Universe. For galaxies up to z≈ 7.7 sufficient wavelength coverage exists to probe the rest-frame ultraviolet (UV) continuum without contamination from either Lyman α emission or the Lyman α break. In this work we use near-infrared (near-IR) imaging to measure the rest-frame UV continuum colours of galaxies at 4.7 < z < 7.7. We have carefully defined a colour–colour selection to minimize any inherent bias in the measured UV continuum slope for the drop-out samples. For the highest redshift sample (6.7 < z < 7.7), selected as zf850lp-band drop-outs, we find mean UV continuum colours approximately equal to zero (AB), consistent with a dust-free, solar metallicity, star-forming population (or a moderately dusty population of low metallicity). At lower redshift we find that the mean UV continuum colours of galaxies (over the same luminosity range) are redder, and that galaxies with higher luminosities are also slightly redder on average. One interpretation of this is that lower redshift and more luminous galaxies are dustier; however, this interpretation is complicated by the effects of the star formation history and metallicity and potentially the initial mass function on the UV continuum colours.
Monthly Notices of the Royal Astronomical Society | 2013
Silvio Lorenzoni; Andrew J. Bunker; Stephen M. Wilkins; Joseph Caruana; Elizabeth R. Stanway; M. J. Jarvis
We observed Hubble Deep Field South with the new panoramic integral-field spectrograph MUSE that we built and have just commissioned at the VLT. The data cube resulting from 27 h of integration covers one arcmin(2) field of view at an unprecedented depth with a 1 sigma emission-line surface brightness limit of 1 x 10(-19) erg s(-1) cm(-2) arcsec(-2), and contains similar to 90 000 spectra. We present the combined and calibrated data cube, and we performed a first-pass analysis of the sources detected in the Hubble Deep Field South imaging. We measured the redshifts of 189 sources up to a magnitude I-814 = 29.5, increasing the number of known spectroscopic redshifts in this field by more than an order of magnitude. We also discovered 26 Ly alpha emitting galaxies that are not detected in the HST WFPC2 deep broad-band images. The intermediate spectral resolution of 2.3 angstrom allows us to separate resolved asymmetric Ly alpha emitters, [O II] 3727 emitters, and C III] 1908 emitters, and the broad instantaneous wavelength range of 4500 angstrom helps to identify single emission lines, such as [O III] 5007, H beta, and H alpha, over a very wide redshift range. We also show how the three-dimensional information of MUSE helps to resolve sources that are confused at ground-based image quality. Overall, secure identifications are provided for 83% of the 227 emission line sources detected in the MUSE data cube and for 32% of the 586 sources identified in the HST catalogue. The overall redshift distribution is fairly flat to z = 6.3, with a reduction between z = 1.5 to 2.9, in the well-known redshift desert. The field of view of MUSE also allowed us to detect 17 groups within the field. We checked that the number counts of [O II] 3727 and Ly alpha emitters are roughly consistent with predictions from the literature. Using two examples, we demonstrate that MUSE is able to provide exquisite spatially resolved spectroscopic information on the intermediate-redshift galaxies present in the field. This unique data set can be used for a wide range of follow-up studies. We release the data cube, the associated products, and the source catalogue with redshifts, spectra, and emission-line fluxes.
Monthly Notices of the Royal Astronomical Society | 2011
Silvio Lorenzoni; Andrew J. Bunker; Stephen M. Wilkins; Elizabeth R. Stanway; M. J. Jarvis; Joseph Caruana
Following our previous spectroscopic observations of z > 7 galaxies with Gemini/Gemini Near Infra-Red Spectrograph (GNIRS) and Very Large Telescope (VLT)/XSHOOTER, which targeted a total of eight objects, we present here our results from a deeper and larger VLT/FOcal Reducer and Spectrograph (FORS2) spectroscopic sample of Wide Field Camera 3 selected z > 7 candidate galaxies. With our FORS2 setup we cover the 737–1070 nm wavelength range, enabling a search for Lyman α in the redshift range spanning 5.06–7.80. We target 22 z-band dropouts and find no evidence of Lyman α emission, with the exception of a tentative detection (<5σ, which is our adopted criterion for a secure detection) for one object. The upper limits on Lyman α flux and the broad-band magnitudes are used to constrain the rest-frame equivalent widths for this line emission. We analyse our FORS2 observations in combination with our previous GNIRS and XSHOOTER observations, and suggest that a simple model where the fraction of high rest-frame equivalent width emitters follows the trend seen at z = 3-6.5 is inconsistent with our non-detections at z ∼ 7.8 at the 96 per cent confidence level. This may indicate that a significant neutral H I fraction in the intergalactic medium suppresses Lyman α, with an estimated neutral fraction χHI∼0.5, in agreement with other estimates.
Monthly Notices of the Royal Astronomical Society | 2011
Stephen M. Wilkins; Andrew J. Bunker; Silvio Lorenzoni; Joseph Caruana
We present Gemini/Gemini Near Infrared Spectrograph (GNIRS) spectroscopic observations of four z-band (z approximate to 7) dropout galaxies and Very Large Telescope (VLT)/XSHOOTER observations of one z-band dropout and three Y-band (z approximate to 8-9) dropout galaxies in the Hubble Ultra Deep Field, which were selected with Wide Field Camera 3 imaging on the Hubble Space Telescope. We find no evidence of Lyman alpha emission with a typical 5 sigma sensitivity of 5 x 10(-18) erg cm(-2) s(-1), and use the upper limits on Lyman alpha flux and the broad-band magnitudes to constrain the rest-frame equivalent widths for this line emission. Accounting for incomplete spectral coverage, we survey 3.0 z-band dropouts and 2.9 Y-band dropouts to a Lyman alpha rest-frame equivalent width limit > 120 angstrom (for an unresolved emission line); for an equivalent width limit of 50 angstrom the effective numbers of drop-outs surveyed fall to 1.2 z-band drop-outs and 1.5 Y-band drop-outs. A simple model where the fraction of high rest-frame equivalent width emitters follows the trend seen at z = 3-6.5 is inconsistent with our non-detections at z = 7-9 at the approximate to 1 sigma level for spectrally unresolved lines, which may indicate that a significant neutral H I fraction in the intergalactic medium suppresses the Lyman alpha line in z-drop and Y-drop galaxies at z > 7.
Monthly Notices of the Royal Astronomical Society | 2013
Andrew J. Bunker; Joseph Caruana; Stephen M. Wilkins; Elizabeth R. Stanway; Silvio Lorenzoni; Mark Lacy; M. J. Jarvis; Samantha Hickey
The recent Hubble Space Telescope near-infrared imaging with the Wide-Field Camera #3 (WFC 3) of the Great Observatories Origins Deep Survey South (GOODS-S) field in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) programme covering nearly 100 arcmin2, along with already existing Advanced Camera for Surveys optical data, makes possible the search for bright galaxy candidates at redshift z ≈ 7–9 using the Lyman break technique. We present the first analysis of z′-drop z ≈ 7 candidate galaxies in this area, finding 19 objects. We also analyse Y-drops at z ≈ 8, trebling the number of bright (HAB < 27 mag) Y-drops from our previous work, and compare our results with those of other groups based on the same data. The bright high-redshift galaxy candidates we find serve to better constrain the bright end of the luminosity function at those redshift, and may also be more amenable to spectroscopic confirmation than the fainter ones presented in various previous work on the smaller fields (the Hubble Ultra Deep Field and the WFC 3 Early Release Science observations). We also look at the agreement with previous luminosity functions derived from WFC 3 drop-out counts, finding a generally good agreement, except for the luminosity function of Yan et al. at z ≈ 8, which is strongly ruled out.
Monthly Notices of the Royal Astronomical Society | 2013
Stephen M. Wilkins; William Coulton; Joseph Caruana; Rupert A. C. Croft; Tiziana Di Matteo; Nishikanta Khandai; Yu Feng; Andrew J. Bunker; Holly Elbert
The definitive version can be found at: http://onlinelibrary.wiley.com/ Copyright the Royal Astronomical Society