Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph Ciccolini is active.

Publication


Featured researches published by Joseph Ciccolini.


British Journal of Cancer | 1999

Increased cytotoxicity and bystander effect of 5-fluorouracil and 5 ′ -deoxy-5-fluorouridine in human colorectal cancer cells transfected with thymidine phosphorylase

Evrard A; Cuq P; Joseph Ciccolini; Vian L; Cano Jp

Summary5-Fluorouracil (5-FU) and 5′-deoxy-5-fluorouridine (5′-DFUR), a prodrug of 5-FU, are anticancer agents activated by thymidine phosphorylase (TP). Transfecting the human TP cDNA into cancer cells in order to sensitize them to these pyrimidine antimetabolites may be an important approach in human cancer gene therapy research. In this study, an expression vector containing the human TP cDNA (pcTP5) was transfected into LS174T human colon carcinoma cells. Eight stable transfectants were randomly selected and analysed. The cytotoxic effects of 5-FU and 5′-DFUR were higher in TP-transfected cells as compared to wild-type cells. The maximal decreases in the IC50 were 80-fold for 5-FU and 40-fold for 5′-DFUR. The increase in sensitivity to these pyrimidines of TP-transfected cells significantly correlated with the increase in both TP activity and TP expression. Transfected clone LS174T-c2 but not wild-type cells exhibited formation of [3H]FdUMP from [3H]5-FU. In addition the LS174T-c2 clone enhanced the cytotoxic effect of 5′-DFUR, but also that of 5-FU, towards co-cultured parental cells. For both anti-cancer agents, this bystander effect did not require cell–cell contact. These results show that both 5-FU or 5′-DFUR could be used together with a TP-suicide vector in cancer gene therapy.


Clinical Cancer Research | 2006

Pharmacogenetics of capecitabine in advanced breast cancer patients

Rémy Largillier; Marie-Christine Etienne-Grimaldi; Jean-Louis Formento; Joseph Ciccolini; Jean-François Nebbia; Aurélie Ginot; Mireille Francoual; Nicole Renée; Jean-Marc Ferrero; Cyril Foa; Moïse Namer; Bruno Lacarelle; Gérard Milano

Purpose: Germinal gene polymorphisms can explain a part of the interpatient pharmacodynamic variability of anticancer drugs, particularly fluoropyrimidines. Genes for which polymorphisms may potentially influence pharmacodynamics of fluoropyrimidines, including capecitabine, are thymidylate synthase (TS), methylenetetrahydrofolate reductase (MTHFR), and dihydropyrimidine dehydrogenase (DPD). Experimental design: The aim of this prospective pilot study was to analyze the effect of TS, MTHFR, and DPD gene polymorphisms on toxicity and efficacy in advanced breast cancer patients receiving capecitabine as monotherapy. Germinal polymorphisms of TS (6 bp deletion in the 3′ region and 28 bp repeats, including G>C mutation in the 5′ region), MTHFR (677C>T and 1298A>C), and DPD (IVS14 + 1G>A) were determined in 105 consecutive patients. Results: A trend toward a higher global toxicity grade 3 and 4 was observed in patients homozygous for the TS 3RG allele compared with patients heterozygous for the 3RG allele or patients not carrying the 3RG allele (50% versus 19% versus 13% respectively, P = 0.064). The sole patient bearing the DPD IVS14 + 1G>A mutation (heterozygous) deceased from hematologic toxicity. The median response duration was 5.8 months (95% confidence interval, 4.3-7.2). Duration of response was significantly shortened in patients homozygous for the 3RG allele compared with others (P = 0.037). Conclusions: The present data suggest that 3RG3RG breast cancer patients are not good candidates for capecitabine therapy. In addition, attention should be paid to DPD deficiency in breast cancer patients receiving capecitabine. These preliminary data require further confirmation on a larger number of patients.


Journal of Clinical Oncology | 2010

Cytidine Deaminase Residual Activity in Serum Is a Predictive Marker of Early Severe Toxicities in Adults After Gemcitabine-Based Chemotherapies

Joseph Ciccolini; Laetitia Dahan; Nicolas André; Alexandre Evrard; Muriel Duluc; Aurore Blesius; Chenguang Yang; Sarah Giacometti; Caroline Brunet; Caroline Raynal; Adrien Ortiz; Nicolas Frances; Athanassios Iliadis; Florence Duffaud; Jean-François Seitz; Cédric Mercier

PURPOSE Anticipating toxicities with gemcitabine is an ongoing story, and deregulation in cytidine deaminase (CDA) could be associated with increased risk of developing early severe toxicities on drug exposure. PATIENTS AND METHODS A simple test to evaluate CDA phenotypic status was first validated in an animal model investigating relationships between CDA activity and gemcitabine-related toxicities. Next, relevance of this test as a marker for toxicities was retrospectively tested in a first subset of 64 adult patients treated with gemcitabine alone, then it was tested in a larger group of 130 patients who received gemcitabine either alone or combined with other drugs and in 20 children. Additionally, search for the 435 T>C, 208 G>A and 79 A>C mutations on the CDA gene was performed. Results In mice, CDA deficiency impacted on gemcitabine pharmacokinetics and had subsequent lethal toxicities. In human, 12% of adult patients experienced early severe toxicities after gemcitabine administration. A significant difference in CDA activities was observed between patients with and without toxicities (1.2 +/- 0.8 U/mg v 4 +/- 2.6 U/mg; P < .01). Conversely, no genotype-to-phenotype relationships were found. Of note, the patients who displayed particularly reduced CDA activity all experienced strong toxicities. Gemcitabine was well tolerated in children, and no CDA deficiency was evidenced. CONCLUSION Our data suggest that CDA functional testing could be a simple and easy marker to discriminate adult patients at risk of developing severe toxicities with gemcitabine. Particularly, this study demonstrates that CDA deficiency, found in 7% of adult patients, is associated with a maximum risk of developing early severe toxicities with gemcitabine.


British Journal of Cancer | 2003

Molecular mechanisms underlying the interaction between ZD1839 ('Iressa') and cisplatin/5-fluorouracil.

Nicolas Magné; Fischel Jl; Tiffon C; Patricia Formento; Alain Dubreuil; Renée N; Formento Jl; Francoual M; Joseph Ciccolini; Marie-Christine Etienne; Milano G

ZD1839 (‘Iressa’), an orally active, selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, is currently being investigated in clinical trials as a treatment for cancer. ‘Iressa’ is a trademark of the AstraZeneca group of companies. We have previously demonstrated a synergistic interaction between ZD1839 and cisplatin/5-fluorouracil (5FU) in CAL33, a human head and neck cancer cell line that markedly expresses EGFR. This study examined the effects of this drug combination on the cell cycle, cell cycle regulators, apoptosis-related factors, EGFR-related signalling and DNA repair in CAL33 cells. The cells were incubated with ZD1839 alone for 48 h, then cisplatin and 5FU were added. Exposure to the drug combination continued for a further 48 h. ZD1839 alone induced accumulation of cells in the G0/G1 phase of the cell cycle at 24 h accompanied by a concomitant increase in p21, p27 and Bax, a significant decrease in Bcl2 and a decrease in Akt phosphorylation. A decrease in DNA-PK was observed at 48 h. ZD1839 alone had no effect on caspase-3 activity, but addition of ZD1839 to cisplatin-5FU led to a significant increase in caspase-3 activity at 96 h. Thus, ZD1839 affects key cellular pathways controlling cell proliferation, apoptosis and DNA repair. These data provide a rationale to support clinical trials combining ZD1839 and cisplatin–5FU and other protocols that combine EGFR-targeting agents with chemotherapy or radiotherapy.


Therapeutic Drug Monitoring | 2006

A rapid and inexpensive method for anticipating severe toxicity to fluorouracil and fluorouracil-based chemotherapy.

Joseph Ciccolini; Cédric Mercier; Alexandre Evrard; Laetitia Dahan; Jean-christophe Boyer; Florence Duffaud; Karine Richard; Carmelo Blanquicett; Gérard Milano; Aurore Blesius; Alain Durand; Jean-François Seitz; Roger Favre; Bruno Lacarelle

Dihydropyrimidine dehydrogenase (DPD) deficiency leads to dramatic overexposure to fluorouracil (5-FU), resulting in a potentially lethal outcome in patients treated with standard doses. The aim of this study was to validate, in a routine clinical setting, a simple and rapid method to determine the DPD status in a subset of cancer patients, all presenting with life-threatening toxicities following 5-FU or capecitabine intake. In this study, 80 out of 615 patients (13%) suffered severe toxicities, including 5 lethal ones (0.8%), during or after chemotherapy with a fluoropyrimidine drug. Patients with severe toxicities were treated with 5-FU (76 patients) or capecitabine-containing protocols (4 patients). Simplified uracil to di-hydrouracil (U/UH2) ratio determination in plasma was retrospectively performed in these 80 patients, as a surrogate marker of DPD activity. When possible, 5-FU Css determination was performed, and screenings for the canonical IVS14+1G>A mutation were systematically carried out. Comparison of the U/UH2 ratios with a reference, non-toxic population, showed abnormal values suggesting impaired DPD activity in 57 out of the 80 toxic patients (71%) included in this study, and in 4 out of 5 patients (80%) with a fatal outcome. Similarly, drug exposures up to 15 times higher than the range observed in the non-toxic population were also observed. Importantly, no IVS14+1G>A mutation was found in these patients, including those displaying the most severe or lethal toxicities. These data warrant systematic detection of DPD-deficient patients prior to fluoropyrimidine administration, including when oral capecitabine (Xeloda) is scheduled. Finally, the simplified methodology presented here proved to be a low cost and rapid way to identify routinely patients at risk of toxicity with 5-FU or capecitabine.


PLOS ONE | 2009

Antiproliferative Effect of Ascorbic Acid Is Associated with the Inhibition of Genes Necessary to Cell Cycle Progression

Sophie Belin; Ferdinand Kaya; Ghislaine Duisit; Sarah Giacometti; Joseph Ciccolini; Michel Fontes

Background Ascorbic acid (AA), or Vitamin C, is most well known as a nutritional supplement with antioxidant properties. Recently, we demonstrated that high concentrations of AA act on PMP22 gene expression and partially correct the Charcot-Marie-Tooth disease phenotype in a mouse model. This is due to the capacity of AA, but not other antioxidants, to down-modulate cAMP intracellular concentration by a competitive inhibition of the adenylate cyclase enzymatic activity. Because of the critical role of cAMP in intracellular signalling, we decided to explore the possibility that ascorbic acid could modulate the expression of other genes. Methods and Findings Using human pangenomic microarrays, we found that AA inhibited the expression of two categories of genes necessary for cell cycle progression, tRNA synthetases and translation initiation factor subunits. In in vitro assays, we demonstrated that AA induced the S-phase arrest of proliferative normal and tumor cells. Highest concentrations of AA leaded to necrotic cell death. However, quiescent cells were not susceptible to AA toxicity, suggesting the blockage of protein synthesis was mainly detrimental in metabolically-active cells. Using animal models, we found that high concentrations of AA inhibited tumor progression in nude mice grafted with HT29 cells (derived from human colon carcinoma). Consistently, expression of tRNA synthetases and ieF2 appeared to be specifically decreased in tumors upon AA treatment. Conclusions AA has an antiproliferative activity, at elevated concentration that could be obtained using IV injection. This activity has been observed in vitro as well in vivo and likely results from the inhibition of expression of genes involved in protein synthesis. Implications for a clinical use in anticancer therapies will be discussed.


Clinical Colorectal Cancer | 2010

Routine dihydropyrimidine dehydrogenase testing for anticipating 5-fluorouracil-related severe toxicities: hype or hope?

Joseph Ciccolini; Eva Gross; Laetitia Dahan; Bruno Lacarelle; Cédric Mercier

5-Fluorouracil (5-FU) is a mainstay for treating colorectal cancer, alone or more frequently as part of combination therapies. However, its efficacy/toxicity balance is often limited by the occurrence of severe toxicities, showing in about 15%-20% of patients. Several clinical reports have shown the deleterious effect of dihydropyrimidine dehydrogenase (DPD) genetic polymorphism, a condition that reduces the liver detoxification step of standard dosages of 5-FU, in patients undergoing fluoropyrimidine-based therapy. Admittedly, DPD deficiency accounts for 50%-75% of the severe and sometimes life-threatening toxicities associated with 5-FU (or oral 5-FU). However, technical consensus on the best way to identify patients with DPD deficiency before administrating 5-FU is far from being achieved. Consequently, no regulatory step has been undertaken yet to recommend DPD testing as part of routine clinical practice for securing the administration of 5-FU. This review covers the limits and achievements of the various strategies proposed so far for determining DPD status in patients scheduled for 5-FU therapy.


Nature Reviews Clinical Oncology | 2011

Integrating pharmacogenetics into gemcitabine dosing—time for a change?

Joseph Ciccolini; Cédric Mercier; Laetitia Dahan; Nicolas André

Increasing the efficacy of anticancer agents and avoiding toxic effects is a critical issue in clinical oncology. Identifying biomarkers that predict clinical outcome would ensure improved patient care. Gemcitabine is widely used to treat various solid tumors as a single agent or in combination with other drugs. The therapeutic index of gemcitabine is narrow, and abnormal pharmacokinetics leading to changes in plasma exposure is a major cause of adverse effects. A number of biomarkers have been proposed to predict efficacy of gemcitabine, focusing on molecular determinants of response identified at the tumor level. Genetic and functional deregulations that affect the disposition of a drug could be the reason for life-threatening adverse effects or treatment failure. In particular, deregulation of cytidine deaminase, the enzyme responsible for detoxification of most nucleotide analogs, should be examined. Identifying and validating biomarkers for pharmacogenetic testing before administration of gemcitabine is a step towards personalized medicine.


Biochimie | 2013

Optimization of trans-Resveratrol bioavailability for human therapy

Marie Josèphe Amiot; Béatrice Romier; Thi-Mai Anh Dao; Raphaelle Fanciullino; Joseph Ciccolini; Rémy Burcelin; Laurent Pechere; Claude Emond; Jean-François Savouret; Eric Seree

We have developed an innovative soluble galenic form to overcome the low absorption of trans-Resveratrol (t-Res) as a dry powder. We present here data on pharmacokinetics, bioavailability, and toxicity of t-Res in human volunteers treated with this soluble form, plus additional data on biological effects in rodents. Fifteen healthy volunteers of both sexes received 40 mg of t-Res in two forms, the soluble formulation (caplets) and the original powder (capsules), in a crossover design. Blood samples were collected at 15 min, 30 min, and every hour for 5 h. Plasma concentrations of t-Res and its metabolites were analyzed by liquid chromatography and mass spectrometry. The single dose (40 mg) of the soluble t-Res was well absorbed and elicited biologically efficient blood levels (0.1-6 μM) for several hours, despite metabolization into glucuronide and sulfate conjugates coupled to renal elimination. In contrast, t-Res administered as a dry powder barely elicited efficient blood levels for a short duration. The new formulation led to 8.8-fold higher t-Res levels in plasma versus the powder. t-Res metabolism was not modified and neither intolerance nor toxicity were observed during the study and the following week. The soluble formulation elicited a robust anti-inflammatory effect in various tissues of mice fed a high-fat diet, while dry powder t-Res was almost inactive. Our data suggest that significant improvements in t-Res bioavailability and efficiency can be obtained by this soluble galenic form, also allowing lower doses. The use of t-Res in human therapy is thus greatly facilitated and the toxicity risk is reduced.


Nature Reviews Clinical Oncology | 2016

Computational oncology — mathematical modelling of drug regimens for precision medicine

Dominique Barbolosi; Joseph Ciccolini; Bruno Lacarelle; Fabrice Barlesi; Nicolas André

Computational oncology is a generic term that encompasses any form of computer-based modelling relating to tumour biology and cancer therapy. Mathematical modelling can be used to probe the pharmacokinetics and pharmacodynamics relationships of the available anticancer agents in order to improve treatment. As a result of the ever-growing numbers of druggable molecular targets and possible drug combinations, obtaining an optimal toxicity–efficacy balance is an increasingly complex task. Consequently, standard empirical approaches to optimizing drug dosing and scheduling in patients are now of limited utility; mathematical modelling can substantially advance this practice through improved rationalization of therapeutic strategies. The implementation of mathematical modelling tools is an emerging trend, but remains largely insufficient to meet clinical needs; at the bedside, anticancer drugs continue to be prescribed and administered according to standard schedules. To shift the therapeutic paradigm towards personalized care, precision medicine in oncology requires powerful new resources for both researchers and clinicians. Mathematical modelling is an attractive approach that could help to refine treatment modalities at all phases of research and development, and in routine patient care. Reviewing preclinical and clinical examples, we highlight the current achievements and limitations with regard to computational modelling of drug regimens, and discuss the potential future implementation of this strategy to achieve precision medicine in oncology.

Collaboration


Dive into the Joseph Ciccolini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laetitia Dahan

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Nicolas André

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge