Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph Clampitt is active.

Publication


Featured researches published by Joseph Clampitt.


Monthly Notices of the Royal Astronomical Society | 2013

Voids in modified gravity: excursion set predictions

Joseph Clampitt; Yan-Chuan Cai; Baojiu Li

We investigate the behaviour of the fifth force in voids in chameleon models using the spherical collapse method. Contrary to Newtonian gravity, we find the fifth force is repulsive in voids. The strength of the fifth force depends on the density inside and outside the void region as well as its radius. It can be many times larger than the Newtonian force and their ratio is in principle unbound. This is very different from the case in haloes, where the fifth force is no more than 1/3 of gravity. The evolution of voids is governed by the Newtonian gravity, the effective dark energy force and the fifth force. While the first two forces are common in both Λ cold dark matter (ΛCDM) and chameleon universes, the fifth force is unique to the latter. Driven by the outward-pointing fifth force, individual voids in chameleon models expand faster and grow larger than in a ΛCDM universe. The expansion velocity of the void shell can be 20–30 per cent larger for voids of a few Mpc h−1 in radius, while their sizes can be larger by ∼10 per cent. This difference is smaller for larger voids of the same density. We compare void statistics using excursion set theory; for voids of the same size, their number density is found to be larger in chameleon models. The fractional difference increases with void size due to the steepening of the void distribution function. The chance of having voids of radius ∼25 Mpc h−1 can be 2.5 times larger. This difference is about 10 times larger than that in the halo mass function. We find strong environmental dependence of void properties and population in chameleon models. The differences in size and expansion velocity with general relativity are both larger for small voids in high-density regions. In general, the difference between chameleon models and ΛCDM in void properties (size, expansion velocity and distribution function) is larger than the corresponding quantities for haloes. This suggests that voids might be better candidates than haloes for testing gravity.


Monthly Notices of the Royal Astronomical Society | 2016

The DES Science Verification weak lensing shear catalogues

M. Jarvis; E. Sheldon; J. Zuntz; Tomasz Kacprzak; Sarah Bridle; Adam Amara; Robert Armstrong; M. R. Becker; G. M. Bernstein; C. Bonnett; C. L. Chang; Ritanjan Das; J. P. Dietrich; A. Drlica-Wagner; T. F. Eifler; C. Gangkofner; D. Gruen; Michael Hirsch; Eric Huff; Bhuvnesh Jain; S. Kent; D. Kirk; N. MacCrann; P. Melchior; A. A. Plazas; Alexandre Refregier; Barnaby Rowe; E. S. Rykoff; S. Samuroff; C. Sanchez

We present weak lensing shear catalogues for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogues of 2.12 million and 3.44 million galaxies respectively. We detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. We also discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogues for the full 5-year DES, which is expected to cover 5000 square degrees.


Monthly Notices of the Royal Astronomical Society | 2015

Lensing measurements of the mass distribution in SDSS voids

Joseph Clampitt; Bhuvnesh Jain

We measure weak lensing mass profiles of voids from a volume-limited sample of SDSS Luminous Red Galaxies (LRGs). We find voids using an algorithm designed to maximize the lensing signal by dividing the survey volume into 2D slices, and then finding holes in this 2D distribution of LRGs. We perform a stacked shear measurement on about 20,000 voids with radii between 15-55 Mpc/h and redshifts between 0.16-0.37. We measure the characteristic radial shear signal of voids with a signal-to-noise of 7. The mass profile corresponds to a fractional underdensity of about -0.4 inside the void radius and a slow approach to the mean density indicating a partially compensated void structure. We compare our measured shape and amplitude with the predictions of Krause et al 2013. Voids in the galaxy distribution have been extensively modeled using simulations and measured in the SDSS. We discuss how the addition of void mass profiles can enable studies of galaxy formation and cosmology.


Monthly Notices of the Royal Astronomical Society | 2015

Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

P. Melchior; E. Suchyta; Eric Huff; Michael Hirsch; T. Kacprzak; E. S. Rykoff; D. Gruen; R. Armstrong; David Bacon; K. Bechtol; G. M. Bernstein; Sarah Bridle; Joseph Clampitt; K. Honscheid; Bhuvnesh Jain; S. Jouvel; Elisabeth Krause; H. Lin; N. MacCrann; K. Patton; A. Plazas; Barnaby Rowe; V. Vikram; H. Wilcox; J. Young; J. Zuntz; T. D. Abbott; F. B. Abdalla; S. Allam; Mandakranta Banerji

We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECams large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modeling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modeling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1 degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.


Monthly Notices of the Royal Astronomical Society | 2017

Cosmic voids and void lensing in the Dark Energy Survey Science Verification data

C. Sánchez; Joseph Clampitt; A. Kovács; Bhuvnesh Jain; J. García-Bellido; Seshadri Nadathur; D. Gruen; Nico Hamaus; Dragan Huterer; P. Vielzeuf; Adam Amara; C. Bonnett; J. DeRose; W. G. Hartley; M. Jarvis; Ofer Lahav; R. Miquel; Eduardo Rozo; E. S. Rykoff; E. Sheldon; Risa H. Wechsler; J. Zuntz; T. M. C. Abbott; F. B. Abdalla; J. Annis; A. Benoit-Lévy; G. M. Bernstein; Rebecca A. Bernstein; E. Bertin; David J. Brooks

Galaxies and their dark matter halos populate a complicated filamentary network around large, nearly empty regions known as cosmic voids. Cosmic voids are usually identified in spectroscopic galaxy surveys, where 3D information about the large-scale structure of the Universe is available. Although an increasing amount of photometric data is being produced, its potential for void studies is limited since photometric redshifts induce line-of-sight position errors of ∼50 Mpc/h or more that can render many voids undetectable. In this paper we present a new void finder designed for photometric surveys, validate it using simulations, and apply it to the high-quality photo-z redMaGiC galaxy sample of the Dark Energy Survey Science Verification (DES-SV) data. The algorithm works by projecting galaxies into 2D slices and finding voids in the smoothed 2D galaxy density field of the slice. Fixing the line-of-sight size of the slices to be at least twice the photo-z scatter, the number of voids found in these projected slices of simulated spectroscopic and photometric galaxy catalogs is within 20% for all transverse void sizes, and indistinguishable for the largest voids of radius ∼70 Mpc/h and larger. The positions, radii, and projected galaxy profiles of photometric voids also accurately match the spectroscopic void sample. Applying the algorithm to the DES-SV data in the redshift range 0.2<z<0.8 , we identify 87 voids with comoving radii spanning the range 18-120 Mpc/h , and carry out a stacked weak lensing measurement. With a significance of 4.4σ , the lensing measurement confirms the voids are truly underdense in the matter field and hence not a product of Poisson noise, tracer density effects or systematics in the data. It also demonstrates, for the first time in real data, the viability of void lensing studies in photometric surveys.


Monthly Notices of the Royal Astronomical Society | 2015

Voids in modified gravity reloaded: Eulerian void assignment

Tsz Yan Lam; Joseph Clampitt; Yan-Chuan Cai; Baojiu Li

We revisit the excursion set approach to calculate void abundances in chameleon-type modified gravity theories, which was previously studied by Clampitt, Cai & Li. We focus on properly accounting for the void-in-cloud effect, i.e. the growth of those voids sitting in overdense regions may be restricted by the evolution of their surroundings. This effect may change the distribution function of voids hence affect predictions on the differences between modified gravity (MG) and general relativity (GR). We show that the thin-shell approximation usually used to calculate the fifth force is qualitatively good but quantitatively inaccurate. Therefore, it is necessary to numerically solve the fifth force in both overdense and underdense regions. We then generalize the Eulerian-void-assignment method of Paranjape, Lam & Sheth to our modified gravity model. We implement this method in our Monte Carlo simulations and compare its results with the original Lagrangian methods. We find that the abundances of small voids are significantly reduced in both MG and GR due to the restriction of environments. However, the change in void abundances for the range of void radii of interest for both models is similar. Therefore, the difference between models remains similar to the results from the Lagrangian method, especially if correlated steps of the random walks are used. As Clampitt et al., we find that the void abundance is much more sensitive to MG than halo abundances. Our method can then be a faster alternative to N-body simulations for studying the qualitative behaviour of a broad class of theories. We also discuss the limitations and other practical issues associated with its applications.


Monthly Notices of the Royal Astronomical Society | 2017

Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data

Joseph Clampitt; C. Sánchez; Juliana Kwan; E. Krause; N. MacCrann; Youngsoo Park; M. A. Troxel; Bhuvnesh Jain; Eduardo Rozo; E. S. Rykoff; Risa H. Wechsler; J. Blazek; C. Bonnett; M. Crocce; Y. Fang; E. Gaztanaga; D. Gruen; M. Jarvis; R. Miquel; J. Prat; A. Ross; E. Sheldon; J. Zuntz; T. M. C. Abbott; F. B. Abdalla; Robert Armstrong; M. R. Becker; A. Benoit-Lévy; G. M. Bernstein; E. Bertin

We present galaxy-galaxy lensing results from 139 deg(2) of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise ratio of 29 over scales 0.09 < R < 15 Mpc h(-1), including all lenses over a wide redshift range 0.2 < z < 0.8. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtain consistent results for the lensing measurement with two independent shear pipelines, NGMIX and IM3SHAPE. We perform a number of null tests on the shear and photometric redshift catalogues and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The result and systematic checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a halo occupation distribution (HOD) model, and demonstrate that our data constrain the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.


Monthly Notices of the Royal Astronomical Society | 2016

Lensing measurements of the ellipticity of luminous red galaxies dark matter haloes

Joseph Clampitt; Bhuvnesh Jain

Lensing measurements of the shapes of dark matter halos can provide tests of gravity theories and possible dark matter interactions. We measure the quadrupole weak lensing signal from the elliptical halos of 70,000 SDSS Luminous Red Galaxies. We use a new estimator that nulls the spherical halo lensing signal, isolating the shear due to anisotropy in the dark matter distribution. One of the two Cartesian components of our estimator is insensitive to the primary systematic, a spurious alignment of lens and source ellipticities, allowing us to make robust measurements of halo ellipticity. Our best-fit value for the ellipticity of the surface mass density is


Monthly Notices of the Royal Astronomical Society | 2017

Imprint of DES superstructures on the cosmic microwave background

A. Kovács; C. Sánchez; J. García-Bellido; Seshadri Nadathur; Robert Crittenden; D. Gruen; Dragan Huterer; David Bacon; Joseph Clampitt; J. DeRose; S. Dodelson; E. Gaztanaga; Bhuvnesh Jain; D. Kirk; Ofer Lahav; R. Miquel; Krishna Naidoo; J. A. Peacock; B. Soergel; L. Whiteway; F. B. Abdalla; S. Allam; J. Annis; A. Benoit-Lévy; E. Bertin; D. Brooks; E. Buckley-Geer; A. Carnero Rosell; M. Carrasco Kind; J. Carretero

0.24 \pm 0.06


Monthly Notices of the Royal Astronomical Society | 2016

Clustering and bias measurements of SDSS voids

Joseph Clampitt; Bhuvnesh Jain; Carles Sánchez

, which translates to an axis ratio of 0.78. We rule out the hypothesis of no ellipticity at the

Collaboration


Dive into the Joseph Clampitt's collaboration.

Top Co-Authors

Avatar

Bhuvnesh Jain

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

E. S. Rykoff

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. M. Bernstein

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

N. MacCrann

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Zuntz

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

M. Crocce

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Bridle

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge