Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph D. Dougherty is active.

Publication


Featured researches published by Joseph D. Dougherty.


Cell | 2008

Application of a Translational Profiling Approach for the Comparative Analysis of CNS Cell Types

Joseph P. Doyle; Joseph D. Dougherty; Myriam Heiman; Eric F. Schmidt; Tanya R. Stevens; Guojun Ma; Sujata Bupp; Prerana Shrestha; Rajiv D. Shah; Martin L. Doughty; Shiaoching Gong; Paul Greengard; Nathaniel Heintz

Comparative analysis can provide important insights into complex biological systems. As demonstrated in the accompanying paper, translating ribosome affinity purification (TRAP) permits comprehensive studies of translated mRNAs in genetically defined cell populations after physiological perturbations. To establish the generality of this approach, we present translational profiles for 24 CNS cell populations and identify known cell-specific and enriched transcripts for each population. We report thousands of cell-specific mRNAs that were not detected in whole-tissue microarray studies and provide examples that demonstrate the benefits deriving from comparative analysis. To provide a foundation for further biological and in silico studies, we provide a resource of 16 transgenic mouse lines, their corresponding anatomic characterization, and translational profiles for cell types from a variety of central nervous system structures. This resource will enable a wide spectrum of molecular and mechanistic studies of both well-known and previously uncharacterized neural cell populations.


Neuron | 2001

A Genetic Analysis of Neural Progenitor Differentiation

Daniel H. Geschwind; Jing Ou; Mathew C. Easterday; Joseph D. Dougherty; Robert L. Jackson; Zugen Chen; Heath Antoine; Alexey Terskikh; Irving L. Weissman; Stanley F. Nelson; Harley I. Kornblum

Genetic mechanisms regulating CNS progenitor function and differentiation are not well understood. We have used microarrays derived from a representational difference analysis (RDA) subtraction in a heterogeneous stem cell culture system to systematically study the gene expression patterns of CNS progenitors. This analysis identified both known and novel genes enriched in progenitor cultures. In situ hybridization in a subset of clones demonstrated that many of these genes were expressed preferentially in germinal zones, some showing distinct ventricular or subventricular zone labeling. Several genes were also enriched in hematopoietic stem cells, suggesting an overlap of gene expression in neural and hematopoietic progenitors. This combination of methods demonstrates the power of using custom microarrays derived from RDA-subtracted libraries for both gene discovery and gene expression analysis in the central nervous system.


Molecular and Cellular Biology | 2005

Homologues of the Caenorhabditis elegans Fox-1 Protein Are Neuronal Splicing Regulators in Mammals†

Jason G. Underwood; Paul L. Boutz; Joseph D. Dougherty; Peter Stoilov; Douglas L. Black

ABSTRACT A vertebrate homologue of the Fox-1 protein from C. elegans was recently shown to bind to the element GCAUG and to act as an inhibitor of alternative splicing patterns in muscle. The element UGCAUG is a splicing enhancer element found downstream of numerous neuron-specific exons. We show here that mouse Fox-1 (mFox-1) and another homologue, Fox-2, are both specifically expressed in neurons in addition to muscle and heart. The mammalian Fox genes are very complex transcription units that generate transcripts from multiple promoters and with multiple internal exons whose inclusion is regulated. These genes produce a large family of proteins with variable N and C termini and internal deletions. We show that the overexpression of both Fox-1 and Fox-2 isoforms specifically activates splicing of neuronally regulated exons. This splicing activation requires UGCAUG enhancer elements. Conversely, RNA interference-mediated knockdown of Fox protein expression inhibits splicing of UGCAUG-dependent exons. These experiments show that this large family of proteins regulates splicing in the nervous system. They do this through a splicing enhancer function, in addition to their apparent negative effects on splicing in vertebrate muscle and in worms.


Journal of Cell Biology | 2005

Maternal embryonic leucine zipper kinase (MELK) regulates multipotent neural progenitor proliferation

Ichiro Nakano; Andres A. Paucar; Ruchi Bajpai; Joseph D. Dougherty; Amani Zewail; Theresa K. Kelly; Kevin Kim; Jing Ou; Matthias Groszer; Tetsuya Imura; William A. Freije; Stanley F. Nelson; Michael V. Sofroniew; Hong Wu; Xin Liu; Alexey Terskikh; Daniel H. Geschwind; Harley I. Kornblum

Maternal embryonic leucine zipper kinase (MELK) was previously identified in a screen for genes enriched in neural progenitors. Here, we demonstrate expression of MELK by progenitors in developing and adult brain and that MELK serves as a marker for self-renewing multipotent neural progenitors (MNPs) in cultures derived from the developing forebrain and in transgenic mice. Overexpression of MELK enhances (whereas knockdown diminishes) the ability to generate neurospheres from MNPs, indicating a function in self-renewal. MELK down-regulation disrupts the production of neurogenic MNP from glial fibrillary acidic protein (GFAP)–positive progenitors in vitro. MELK expression in MNP is cell cycle regulated and inhibition of MELK expression down-regulates the expression of B-myb, which is shown to also mediate MNP proliferation. These findings indicate that MELK is necessary for proliferation of embryonic and postnatal MNP and suggest that it regulates the transition from GFAP-expressing progenitors to rapid amplifying progenitors in the postnatal brain.


Nucleic Acids Research | 2010

Analytical approaches to RNA profiling data for the identification of genes enriched in specific cells

Joseph D. Dougherty; Eric F. Schmidt; Miho Nakajima; Nathaniel Heintz

We have recently developed a novel method for the affinity purification of the complete suite of translating mRNA from genetically labeled cell populations. This method permits comprehensive quantitative comparisons of the genes employed by each specific cell type. We provide a detailed description of tools for analysis of data generated with this and related methodologies. An essential question that arises from these data is how to identify those genes that are enriched in each cell type relative to all others. Genes relatively specifically employed by a cell type may contribute to the unique functions of that cell, and thus may become useful targets for development of pharmacological tools for cell-specific manipulations. We describe here a novel statistic, the specificity index, which can be used for comparative quantitative analysis to identify genes enriched in specific cell populations across a large number of profiles. This measure correctly predicts in situ hybridization patterns for many cell types. We apply this measure to a large survey of CNS cell-specific microarray data to identify those genes that are significantly enriched in each population Data and algorithms are available online (www.bactrap.org).


The Journal of Neuroscience | 2014

Cell Type-Specific Expression Analysis to Identify Putative Cellular Mechanisms for Neurogenetic Disorders

Xiaoxiao Xu; Alan Wells; David R. O'Brien; Arye Nehorai; Joseph D. Dougherty

Recent advances have substantially increased the number of genes that are statistically associated with complex genetic disorders of the CNS such as autism and schizophrenia. It is now clear that there will likely be hundreds of distinct loci contributing to these disorders, underscoring a remarkable genetic heterogeneity. It is unclear whether this genetic heterogeneity indicates an equal heterogeneity of cellular mechanisms for these diseases. The commonality of symptoms across patients suggests there could be a functional convergence downstream of these loci upon a limited number of cell types or circuits that mediate the affected behaviors. One possible mechanism for this convergence would be the selective expression of at least a subset of these genes in the cell types that comprise these circuits. Using profiling data from mice and humans, we have developed and validated an approach, cell type-specific expression analysis, for identifying candidate cell populations likely to be disrupted across sets of patients with distinct genetic lesions. Using human genetics data and postmortem gene expression data, our approach can correctly identify the cell types for disorders of known cellular etiology, including narcolepsy and retinopathies. Applying this approach to autism, a disease where the cellular mechanism is unclear, indicates there may be multiple cellular routes to this disorder. Our approach may be useful for identifying common cellular mechanisms arising from distinct genetic lesions.


PLOS ONE | 2011

Recruited cells can become transformed and overtake PDGF-induced murine gliomas in vivo during tumor progression.

Elena I. Fomchenko; Joseph D. Dougherty; Karim Helmy; Amanda M. Katz; Alexander Pietras; Cameron Brennan; Jason T. Huse; Ana Milosevic; Eric C. Holland

Background Gliomas are thought to form by clonal expansion from a single cell-of-origin, and progression-associated mutations to occur in its progeny cells. Glioma progression is associated with elevated growth factor signaling and loss of function of tumor suppressors Ink4a, Arf and Pten. Yet, gliomas are cellularly heterogeneous; they recruit and trap normal cells during infiltration. Methodology/Principal Findings We performed lineage tracing in a retrovirally mediated, molecularly and histologically accurate mouse model of hPDGFb-driven gliomagenesis. We were able to distinguish cells in the tumor that were derived from the cell-of-origin from those that were not. Phenotypic, tumorigenic and expression analyses were performed on both populations of these cells. Here we show that during progression of hPDGFb-induced murine gliomas, tumor suppressor loss can expand the recruited cell population not derived from the cell-of-origin within glioma microenvironment to dominate regions of the tumor, with essentially no contribution from the progeny of glioma cell-of-origin. Moreover, the recruited cells can give rise to gliomas upon transplantation and passaging, acquire polysomal expression profiles and genetic aberrations typically present in glioma cells rather than normal progenitors, aid progeny cells in glioma initiation upon transplantation, and become independent of PDGFR signaling. Conclusions/Significance These results indicate that non-cell-of-origin derived cells within glioma environment in the mouse can be corrupted to become bona fide tumor, and deviate from the generally established view of gliomagenesis.


Genes & Development | 2013

Translational profiling of hypocretin neurons identifies candidate molecules for sleep regulation

Jasbir S. Dalal; Jee Hoon Roh; Susan E. Maloney; Afua A. Akuffo; Samir Shah; Han Yuan; Brie Wamsley; Wendell B. Jones; Cristina de Guzman Strong; Paul A. Gray; David M. Holtzman; Nathaniel Heintz; Joseph D. Dougherty

Hypocretin (orexin; Hcrt)-containing neurons of the hypothalamus are essential for the normal regulation of sleep and wake behaviors and have been implicated in feeding, anxiety, depression, and reward. The absence of these neurons causes narcolepsy in humans and model organisms. However, little is known about the molecular phenotype of these cells; previous attempts at comprehensive profiling had only limited sensitivity or were inaccurate. We generated a Hcrt translating ribosome affinity purification (bacTRAP) line for comprehensive translational profiling of all ribosome-bound transcripts in these neurons in vivo. From this profile, we identified >6000 transcripts detectably expressed above background and 188 transcripts that are highly enriched in these neurons, including all known markers of the cells. Blinded analysis of in situ hybridization databases suggests that ~60% of these are expressed in a Hcrt marker-like pattern. Fifteen of these were confirmed with double labeling and microscopy, including the transcription factor Lhx9. Ablation of this gene results in a >30% loss specifically of Hcrt neurons, without a general disruption of hypothalamic development. Polysomnography and activity monitoring revealed a profound hypersomnolence in these mice. These data provide an in-depth and accurate profile of Hcrt neuron gene expression and suggest that Lhx9 may be important for specification or survival of a subset of these cells.


The Journal of Neuroscience | 2005

PBK/TOPK, a Proliferating Neural Progenitor-Specific Mitogen-Activated Protein Kinase Kinase

Joseph D. Dougherty; A. D. R. Garcia; Ichiro Nakano; Margaret S. Livingstone; B. Norris; R. Polakiewicz; Eric M. Wexler; Michael V. Sofroniew; Harley I. Kornblum; Daniel H. Geschwind

We performed genomic subtraction coupled to microarray-based gene expression profiling and identified the PDZ (postsynaptic density-95/Discs large/zona occludens-1)-binding kinase/T-LAK (lymphokine-activated killer T cell) cell originating protein kinase (PBK/TOPK) as a gene highly enriched in neural stem cell cultures. Previous studies have identified PBK/TOPK as a mitogen-activated protein kinase (MAPK) kinase that phosphorylated P38 MAPK but with no known expression or function in the nervous system. First, using a novel, bioinformatics-based approach to assess cross-correlation in large microarray datasets, we generated the hypothesis of a cell-cycle-related role for PBK/TOPK in neural cells. We then demonstrated that both PBK/TOPK and P38 are activated in a cell-cycle-dependant manner in neuronal progenitor cells in vitro, and inhibition of this pathway disrupts progenitor proliferation and self-renewal, a core feature of progenitors. In vivo, PBK/TOPK is expressed in rapidly proliferating cells in the adult subependymal zone (SEZ) and early postnatal cerebellar external granular layer. Using an approach based on transgenically targeted ablation and lineage tracing in mice, we show that PBK/TOPK-positive cells in the SEZ are GFAP negative but arise from GFAP-positive neural stem cells during adult neurogenesis. Furthermore, ablation of the adult stem cell population leads to concomitant loss of PBK/TOPK-positive cells in the SEZ. Together, these studies demonstrate that PBK/TOPK is a marker for transiently amplifying neural progenitors in the SEZ. Additionally, they suggest that PBK/TOPK plays an important role in these progenitors, and further implicates the P38 MAPK pathway in general, as an important regulator of progenitor proliferation and self-renewal.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Reexposure to nicotine during withdrawal increases the pacemaking activity of cholinergic habenular neurons

Andreas Görlich; Beatriz Antolin-Fontes; Jessica L. Ables; Silke Frahm; Slimak Ma; Joseph D. Dougherty; Inés Ibañez-Tallon

Significance According to the World Health Organization, tobacco consumption causes the death of close to 6 million people each year, yet successful attempts to quit smoking are very rare. The present study identifies a group of neurons in the brain that respond differently to nicotine after a period of abstinence, suggesting that altered activity of these neurons may contribute to difficulties with smoking cessation. The discovery of genetic variants in the cholinergic receptor nicotinic CHRNA5-CHRNA3-CHRNB4 gene cluster associated with heavy smoking and higher relapse risk has led to the identification of the midbrain habenula–interpeduncular axis as a critical relay circuit in the control of nicotine dependence. Although clear roles for α3, β4, and α5 receptors in nicotine aversion and withdrawal have been established, the cellular and molecular mechanisms that participate in signaling nicotine use and contribute to relapse have not been identified. Here, using translating ribosome affinity purification (TRAP) profiling, electrophysiology, and behavior, we demonstrate that cholinergic neurons, but not peptidergic neurons, of the medial habenula (MHb) display spontaneous tonic firing of 2–10 Hz generated by hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels and that infusion of the HCN pacemaker antagonist ZD7288 in the habenula precipitates somatic and affective signs of withdrawal. Further, we show that a strong, α3β4-dependent increase in firing frequency is observed in these pacemaker neurons upon acute exposure to nicotine. No change in the basal or nicotine-induced firing was observed in cholinergic MHb neurons from mice chronically treated with nicotine. We observe, however, that, during withdrawal, reexposure to nicotine doubles the frequency of pacemaking activity in these neurons. These findings demonstrate that the pacemaking mechanism of cholinergic MHb neurons controls withdrawal, suggesting that the heightened nicotine sensitivity of these neurons during withdrawal may contribute to smoking relapse.

Collaboration


Dive into the Joseph D. Dougherty's collaboration.

Top Co-Authors

Avatar

Michael A. Rieger

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathaniel Heintz

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Allison M. Lake

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan E. Maloney

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

David R. O'Brien

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ichiro Nakano

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Arye Nehorai

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Chengran Yang

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge