Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph D. Yesselman is active.

Publication


Featured researches published by Joseph D. Yesselman.


Journal of Computational Chemistry | 2012

MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields

Joseph D. Yesselman; Daniel J. Price; Jennifer L. Knight; Charles L. Brooks

We introduce a toolset of program libraries collectively titled multipurpose atom‐typer for CHARMM (MATCH) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion of multiple chemical structure file formats into a molecular graph. A general chemical pattern‐matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges, and force field parameters are achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom‐type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment‐based property prediction. In this work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond charge increment rules derived from one force field can be transferred to another. In addition, using leave‐one‐out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM general force field (Vanommeslaeghe, et al., J Comput Chem 2010, 31, 671), one million molecules from the PubChem database of small molecules are typed, parameterized, and minimized.


Journal of the American Chemical Society | 2013

Conservation and functional importance of carbon-oxygen hydrogen bonding in AdoMet-dependent methyltransferases.

Scott Horowitz; Lynnette M.A. Dirk; Joseph D. Yesselman; Jennifer S. Nimtz; Upendra Adhikari; Ryan A. Mehl; Steve Scheiner; Robert L. Houtz; Hashim M. Al-Hashimi; Raymond C. Trievel

S-adenosylmethionine (AdoMet)-based methylation is integral to metabolism and signaling. AdoMet-dependent methyltransferases belong to multiple distinct classes and share a catalytic mechanism that arose through convergent evolution; however, fundamental determinants underlying this shared methyl transfer mechanism remain undefined. A survey of high-resolution crystal structures reveals that unconventional carbon-oxygen (CH···O) hydrogen bonds coordinate the AdoMet methyl group in different methyltransferases irrespective of their class, active site structure, or cofactor binding conformation. Corroborating these observations, quantum chemistry calculations demonstrate that these charged interactions formed by the AdoMet sulfonium cation are stronger than typical CH···O hydrogen bonds. Biochemical and structural studies using a model lysine methyltransferase and an active site mutant that abolishes CH···O hydrogen bonding to AdoMet illustrate that these interactions are important for high-affinity AdoMet binding and transition-state stabilization. Further, crystallographic and NMR dynamics experiments of the wild-type enzyme demonstrate that the CH···O hydrogen bonds constrain the motion of the AdoMet methyl group, potentially facilitating its alignment during catalysis. Collectively, the experimental findings with the model methyltransferase and structural survey imply that methyl CH···O hydrogen bonding represents a convergent evolutionary feature of AdoMet-dependent methyltransferases, mediating a universal mechanism for methyl transfer.


Journal of Biological Chemistry | 2011

Direct Evidence for Methyl Group Coordination by Carbon-Oxygen Hydrogen Bonds in the Lysine Methyltransferase SET7/9

Scott Horowitz; Joseph D. Yesselman; Hashim M. Al-Hashimi; Raymond C. Trievel

SET domain lysine methyltransferases (KMTs) are S-adenosylmethionine (AdoMet)-dependent enzymes that catalyze the site-specific methylation of lysyl residues in histone and non-histone proteins. Based on crystallographic and cofactor binding studies, carbon-oxygen (CH···O) hydrogen bonds have been proposed to coordinate the methyl groups of AdoMet and methyllysine within the SET domain active site. However, the presence of these hydrogen bonds has only been inferred due to the uncertainty of hydrogen atom positions in x-ray crystal structures. To experimentally resolve the positions of the methyl hydrogen atoms, we used NMR 1H chemical shift coupled with quantum mechanics calculations to examine the interactions of the AdoMet methyl group in the active site of the human KMT SET7/9. Our results indicated that at least two of the three hydrogens in the AdoMet methyl group engage in CH···O hydrogen bonding. These findings represent direct, quantitative evidence of CH···O hydrogen bond formation in the SET domain active site and suggest a role for these interactions in catalysis. Furthermore, thermodynamic analysis of AdoMet binding indicated that these interactions are important for cofactor binding across SET domain enzymes.


Proteins | 2011

Predicting extreme pKa shifts in staphylococcal nuclease mutants with constant pH molecular dynamics.

Evan J. Arthur; Joseph D. Yesselman; Charles L. Brooks

Accurate computational methods of determining protein and nucleic acid pKa values are vital to understanding pH‐dependent processes in biological systems. In this article, we use the recently developed method constant pH molecular dynamics (CPHMD) to explore the calculation of highly perturbed pKa values in variants of staphylococcal nuclease (SNase). Simulations were performed using the replica exchange (REX) protocol for improved conformational sampling with eight temperature windows, and yielded converged proton populations in a total sampling time of 4 ns. Our REX‐CPHMD simulations resulted in calculated pKa values with an average unsigned error (AUE) of 0.75 pK units for the acidic residues in Δ + PHS, a hyperstable variant of SNase. For highly pKa‐perturbed SNase mutants with known crystal structures, our calculations yielded an AUE of 1.5 pK units and for those mutants based on modeled structures an AUE of 1.4 pK units was found. Although a systematic underestimate of pK shifts was observed in most of the cases for the highly perturbed pK mutants, correlations between conformational rearrangement and plasticity associated with the mutation and error in pKa prediction was not evident in the data. This study further extends the scope of electrostatic environments explored using the REX‐CPHMD methodology and suggests that it is a reliable tool for rapidly characterizing ionizable amino acids within proteins even when modeled structures are employed. Proteins 2011;


Journal of Computational Chemistry | 2013

Assessing the quality of absolute hydration free energies among CHARMM‐compatible ligand parameterization schemes

Jennifer L. Knight; Joseph D. Yesselman; Charles L. Brooks

Multipurpose atom‐typer for CHARMM (MATCH), an atom‐typing toolset for molecular mechanics force fields, was recently developed in our laboratory. Here, we assess the ability of MATCH‐generated parameters and partial atomic charges to reproduce experimental absolute hydration free energies for a series of 457 small neutral molecules in GBMV2, Generalized Born with a smooth SWitching (GBSW), and fast analytical continuum treatment of solvation (FACTS) implicit solvent models. The quality of hydration free energies associated with small molecule parameters obtained from ParamChem, SwissParam, and Antechamber are compared. Given optimized surface tension coefficients for scaling the surface area term in the nonpolar contribution, these automated parameterization schemes with GBMV2 and GBSW demonstrate reasonable agreement with experimental hydration free energies (average unsigned errors of 0.9–1.5 kcal/mol and R2 of 0.63–0.87). GBMV2 and GBSW consistently provide slightly more accurate estimates than FACTS, whereas Antechamber parameters yield marginally more accurate estimates than the current generation of MATCH, ParamChem, and SwissParam parameterization strategies. Modeling with MATCH libraries that are derived from different CHARMM topology and parameter files highlights the importance of having sufficient coverage of chemical space within the underlying databases of these automated schemes and the benefit of targeting specific functional groups for parameterization efforts to maximize both the breadth and the depth of the parameterized space.


Proteins | 2015

Frequent side chain methyl carbon-oxygen hydrogen bonding in proteins revealed by computational and stereochemical analysis of neutron structures.

Joseph D. Yesselman; Scott Horowitz; Charles L. Brooks; Raymond C. Trievel

The propensity of backbone Cα atoms to engage in carbon‐oxygen (CH···O) hydrogen bonding is well‐appreciated in protein structure, but side chain CH···O hydrogen bonding remains largely uncharacterized. The extent to which side chain methyl groups in proteins participate in CH···O hydrogen bonding is examined through a survey of neutron crystal structures, quantum chemistry calculations, and molecular dynamics simulations. Using these approaches, methyl groups were observed to form stabilizing CH···O hydrogen bonds within protein structure that are maintained through protein dynamics and participate in correlated motion. Collectively, these findings illustrate that side chain methyl CH···O hydrogen bonding contributes to the energetics of protein structure and folding. Proteins 2015; 83:403–410.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Structural conservation in the template/pseudoknot domain of vertebrate telomerase RNA from teleost fish to human

Yaqiang Wang; Joseph D. Yesselman; Qi Zhang; Mijeong Kang; Juli Feigon

Significance Telomerase synthesizes the telomeric DNA at the 3′ ends of chromosomes and maintains genome integrity. Telomerase RNA (TR) provides the template for telomere-repeat synthesis within a template/pseudoknot (t/PK) domain that is essential for activity. We investigated the structure and dynamics of the t/PK from medaka fish, which contain the smallest vertebrate TR, using NMR and modeling. Despite differences in length, sequence, and predicted secondary structure with human TR, the remarkable similarities between subdomains, including one newly identified in medaka, reveal a conserved architecture for vertebrate t/PK. Combining our model of the full-length pseudoknot and information from the 9-Å structure of Tetrahymena telomerase, we propose models for the interaction of medaka and human t/PK with telomerase reverse transcriptase, providing insight into function. Telomerase is an RNA–protein complex that includes a unique reverse transcriptase that catalyzes the addition of single-stranded telomere DNA repeats onto the 3′ ends of linear chromosomes using an integral telomerase RNA (TR) template. Vertebrate TR contains the template/pseudoknot (t/PK) and CR4/5 domains required for telomerase activity in vitro. All vertebrate pseudoknots include two subdomains: P2ab (helices P2a and P2b with a 5/6-nt internal loop) and the minimal pseudoknot (P2b–P3 and associated loops). A helical extension of P2a, P2a.1, is specific to mammalian TR. Using NMR, we investigated the structures of the full-length TR pseudoknot and isolated subdomains in Oryzias latipes (Japanese medaka fish), which has the smallest vertebrate TR identified to date. We determined the solution NMR structure and studied the dynamics of medaka P2ab, and identified all base pairs and tertiary interactions in the minimal pseudoknot. Despite differences in length and sequence, the structure of medaka P2ab is more similar to human P2ab than predicted, and the medaka minimal pseudoknot has the same tertiary interactions as the human pseudoknot. Significantly, although P2a.1 is not predicted to form in teleost fish, we find that it forms in the full-length pseudoknot via an unexpected hairpin. Model structures of the subdomains are combined to generate a model of t/PK. These results provide evidence that the architecture for the vertebrate t/PK is conserved from teleost fish to human. The organization of the t/PK on telomerase reverse transcriptase for medaka and human is modeled based on the cryoEM structure of Tetrahymena telomerase, providing insight into function.


Methods of Molecular Biology | 2016

Modeling Small Noncanonical RNA Motifs with the Rosetta FARFAR Server.

Joseph D. Yesselman; Rhiju Das

Noncanonical RNA motifs help define the vast complexity of RNA structure and function, and in many cases, these loops and junctions are on the order of only ten nucleotides in size. Unfortunately, despite their small size, there is no reliable method to determine the ensemble of lowest energy structures of junctions and loops at atomic accuracy. This chapter outlines straightforward protocols using a webserver for Rosetta Fragment Assembly of RNA with Full Atom Refinement (FARFAR) ( http://rosie.rosettacommons.org/rna_denovo/submit ) to model the 3D structure of small noncanonical RNA motifs for use in visualizing motifs and for further refinement or filtering with experimental data such as NMR chemical shifts.


Nucleic Acids Research | 2015

RNA-Redesign: a web server for fixed-backbone 3D design of RNA

Joseph D. Yesselman; Rhiju Das

RNA is rising in importance as a design medium for interrogating fundamental biology and for developing therapeutic and bioengineering applications. While there are several online servers for design of RNA secondary structure, there are no tools available for the rational design of 3D RNA structure. Here we present RNA-Redesign (http://rnaredesign.stanford.edu), an online 3D design tool for RNA. This resource utilizes fixed-backbone design to optimize the sequence identity and nucleobase conformations of an RNA to match a desired backbone, analogous to fundamental tools that underlie rational protein engineering. The resulting sequences suggest thermostabilizing mutations that can be experimentally verified. Further, sequence preferences that differ between natural and computationally designed sequences can suggest whether natural sequences possess functional constraints besides folding stability, such as cofactor binding or conformational switching. Finally, for biochemical studies, the designed sequences can suggest experimental tests of 3D models, including concomitant mutation of base triples. In addition to the designs generated, detailed graphical analysis is presented through an integrated and user-friendly environment.


Nucleic Acids Research | 2015

Primerize: automated primer assembly for transcribing non-coding RNA domains

Siqi Tian; Joseph D. Yesselman; Pablo Cordero; Rhiju Das

Customized RNA synthesis is in demand for biological and biotechnological research. While chemical synthesis and gel or chromatographic purification of RNA is costly and difficult for sequences longer than tens of nucleotides, a pipeline of primer assembly of DNA templates, in vitro transcription by T7 RNA polymerase and kit-based purification provides a cost-effective and fast alternative for preparing RNA molecules. Nevertheless, designing template primers that optimize cost and avoid mispriming during polymerase chain reaction currently requires expert inspection, downloading specialized software or both. Online servers are currently not available or maintained for the task. We report here a server named Primerize that makes available an efficient algorithm for primer design developed and experimentally tested in our laboratory for RNA domains with lengths up to 300 nucleotides. Free access: http://primerize.stanford.edu.

Collaboration


Dive into the Joseph D. Yesselman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge