Joseph F. Leykam
Michigan State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joseph F. Leykam.
Journal of Biological Chemistry | 1998
Yingbin Fu; Miguel A. Ballicora; Joseph F. Leykam; Jack Preiss
The potato tuber (Solanum tuberosumL.) ADP-glucose pyrophosphorylase activity is activated by a incubation with ADP-glucose and dithiothreitol or by ATP, glucose- 1-phosphate, Ca2+, and dithiothreitol. The activation was accompanied by the appearance of new sulfhydryl groups as determined with 5,5′-dithiobis(2-nitrobenzoic acid). By analyzing the activated and nonactivated enzymes on SDS-polyacrylamide gel electrophoresis under nonreducing conditions, it was found that an intermolecular disulfide bridge between the small subunits of the potato tuber enzyme was reduced during the activation. Further experiments showed that the activation was mediated via a slow reduction and subsequent rapid conformational change induced by ADP-glucose. The activation process could be reversed by oxidation with 5,5′-dithiobis(2-nitrobenzoic acid). Incubation with ADP-glucose and dithiothreitol could reactivate the oxidized enzyme. Chemical modification experiments with [14C]iodoacetic acid and 4-vinylpyridine determined that the intermolecular disulfide bridge was located between Cys12 of the small subunits of the potato tuber enzyme. Mutation of Cys12 in the small subunit into either Ala or Ser eliminated the requirement of DTT on the activation and prevented the formation of the intermolecular disulfide of the potato tuber enzyme. The mutants had instantaneous activation rates as the wild-type in the reduced state. A two-step activation model is proposed.
Phytochemistry | 2000
Leslie J. Goodrum; Amar Patel; Joseph F. Leykam; Marcia J. Kieliszewski
Gum arabic glycoprotein (GAGP) is a large molecular weight, hydroxyproline-rich arabinogalactan-protein (AGP) component of gum arabic. GAGP has a simple, highly biased amino acid composition indicating a repetitive polypeptide backbone. Previous work (Qi, W., Fong, C., Lamport, D.T.A., 1991. Plant Physiology 96, 848), suggested small (approximately 11 residue) repetitive peptide motifs each with three Hyp-arabinoside attachment sites and a single Hyp-arabinogalactan polysaccharide attachment site. We tested that hypothesis by sequence analysis of the GAGP polypeptide after HF-deglycosylation. A family of closely related peptides confirmed the presence of a repetitive 19-residue consensus motif. However, the motif: Ser-Hyp-Hyp-Hyp-Thr-Leu-Ser-Hyp-Ser- Hyp-Thr-Hyp-Thr-Hyp-Hyp-Leu-Gly-Pro-His, was about twice the size anticipated. Thus, judging by Hyp-glycoside profiles of GAGP, the consensus motif contained six Hyp-arabinosides rather than three and two Hyp-polysaccharides rather than one. We inferred the glycosylation sites based on the Hyp contiguity hypothesis which predicts arabinosides on contiguous Hyp residues and arabinogalactan polysaccharides on clustered non-contiguous Hyp residues, i.e. the GAGP motif would consist of arabinosylated contiguous Hyp blocks flanking two central Hyp-polysaccharides. We predict this rigidifies the glycoprotein, enhances the overall symmetry of the glycopeptide motif, and may explain some of the remarkable properties of gum arabic.
Plant Physiology | 2003
Li Tan; Joseph F. Leykam; Marcia J. Kieliszewski
Hydroxyproline (Hyp)-rich glycoproteins (HRGPs) participate in all aspects of plant growth and development. HRGPs are generally highly O-glycosylated through the Hyp residues, which means carbohydrates help define the interactive molecular surface and, hence, HRGP function. The Hyp contiguity hypothesis predicts that contiguous Hyp residues are sites of HRGP arabinosylation, whereas clustered noncontiguous Hyp residues are sites of galactosylation, giving rise to the arabinogalactan heteropolysaccharides that characterize the arabinogalactan-proteins. Early tests of the hypothesis using synthetic genes encoding only clustered noncontiguous Hyp in the sequence (serine [Ser]-Hyp-Ser-Hyp)n or contiguous Hyp in the series (Ser-Hyp-Hyp)n and (Ser-Hyp-Hyp-Hyp-Hyp)n confirmed that arabinogalactan polysaccharide was added only to noncontiguous Hyp, whereas arabinosylation occurred on contiguous Hyp. Here, we extended our tests of the codes that direct arabinogalactan polysaccharide addition to Hyp by building genes encoding the repetitive sequences (alanine [Ala]-proline [Pro]-Ala-Pro)n, (threonine [Thr]-Pro-Thr-Pro)n, and (valine [Val]-Pro-Val-Pro)n, and expressing them in tobacco (Nicotiana tabacum) Bright-Yellow 2 cells as fusion proteins with green fluorescent protein. All of the Pro residues in the (Ala-Pro-Ala-Pro)n fusion protein were hydroxylated and consistent with the hypothesis that every Hyp residue was glycosylated with arabinogalactan polysaccharide. In contrast, 20% to 30% of Pro residues remained non-hydroxylated in the (Thr-Pro-Thr-Pro)n, and (Val-Pro-Val-Pro)n fusion proteins. Furthermore, although 50% to 60% of the Hyp residues were glycosylated with arabinogalactan polysaccharide, some remained non-glycosylated or were arabinosylated. These results suggest that the amino acid side chains of flanking residues influence the extent of Pro hydroxylation and Hyp glycosylation and may explain why isolated noncontiguous Hyp in extensins do not acquire an arabinogalactan polysaccharide but are arabinosylated or remain non-glycosylated.
Journal of Biological Chemistry | 1998
Groblewski Ge; Mutsumi Yoshida; Maria Julia Bragado; Ernst Sa; Joseph F. Leykam; Williams Ja
Although the calcium/calmodulin-regulated protein phosphatase calcineurin has been shown to play a role in a number of intracellular processes, relatively few of the downstream phosphoproteins that are dephosphorylated by this enzyme in cells have been described. Calcineurin was previously shown to play a role in amylase secretion by rat pancreatic acinar cells and to specifically dephosphorylate a 24-kDa cytosolic protein. The present study describes the purification and characterization of this novel phosphoprotein, termed CRHSP-24 (calcium-regulatedheat-stable protein with a molecular mass of 24 kDa). Microgram quantities of CRHSP-24 were purified from a large-scale rat pancreas preparation in a procedure involving heat and acid precipitation, anion-exchange chromatography, preparative electrophoresis, electroelution, and two-dimensional electrophoresis. Internal amino acid sequence was obtained from two peptides following trypsin digestion and high pressure liquid chromatography. Both sequences matched with 100% identity nucleotide sequences of expressed sequence tags from human placenta and rat PC-12 cells. Two CRHSP-24 transcripts of 0.7 and 2.9 kilobases were detected in multiple rat tissues by Northern analysis, whereas a single 24-kDa protein was observed by Western blotting. The CRHSP-24 protein is 147 amino acids in length, is composed of nearly 14% proline, and is phosphorylated entirely on serine residues. Western analysis and 32P metabolic labeling of acini revealed CRHSP-24 to be maximally phosphorylated in control cells and to undergo a rapid sustained dephosphorylation on at least 3 serine residues in response to calcium-mobilizing stimuli. Dephosphorylation of CRHSP-24 was completely inhibited by pretreatment of acini with cyclosporin A or FK506. Furthermore, the inhibitory effects of FK506 were blocked by excess rapamycin. The ubiquitous expression of CRHSP-24 in rat tissues suggests that this novel calcineurin substrate plays a common role in calcium-mediated signal transduction.
Molecular and Biochemical Parasitology | 2003
Michael A. Kron; Michael Petridis; Youli P. Milev; Joseph F. Leykam; Michael Härtlein
Aminoacyl-tRNA synthetases (AARS) are a family of enzymes that exhibit primary and various secondary functions in different species. In Brugia malayi, the gene for asparaginyl-tRNA synthetase (AsnRS), a class II AARS, previously has been identified as a multicopy gene encoding an immunodominant antigen in the serum of humans with lymphatic filariasis. However, the relative level of expression and alternative functions of AARS in nematode parasites is not well understood. We searched the Filarial Genome Project database to identify the number and amino acid specificity of B. malayi AARS cDNAs to gain insight into the role of different AARS in filaria. These data showed that cytoplasmic AsnRS was present in five gene clusters, and is the most frequently represented member of the aminoacyl-tRNA synthetase family in adult B. malayi. The relative level of AsnRS transcribed in adult female B. malayi was compared to the levels of a low abundance and medium abundance AARS by quantitative real-time RT-PCR. By this method, AsnRS cDNA was 11 times greater than arginyl-tRNA synthetase and methionyl-tRNA synthetase cDNA. In situ hybridization using a B. malayi AsnRS-specific oligonucleotide probe identified abundant cytoplasmic mRNA, particularly in the hypodermis of adult B. malayi. In the absence of tRNA, AsnRS synthesizes diadenosine triphosphate, a potent regulator of cell growth in other eukaryotes. These data support the hypothesis that all AARS are not equally expressed in B. malayi and that these enzymes may demonstrate important alternative functions in filaria.
Protein Science | 2008
Michael A. Kron; Sam Cichanowicz; Angela Hendrick; Aizhuo Liu; Joseph F. Leykam; Leslie A. Kuhn
Diagnosis of eukaryotic parasitic infection using antibody‐based tests such as ELISAs (enzyme‐linked immunosorbent assays) is often problematic because of the need to differentiate between homologous host and pathogen proteins and to ensure that antibodies raised against a peptide will also bind to the peptide in the context of its three‐dimensional protein structure. Filariasis caused by the nematode, Brugia malayi, is an important worldwide tropical disease in which parasites disappear from the bloodstream during daylight hours, thus hampering standard microscopic diagnostic methods. To address this problem, a structural approach was used to develop monoclonal antibodies (mAbs) that detect asparaginyl‐tRNA synthetase (AsnRS) secreted from B. malayi. B. malayi and human AsnRS amino acid sequences were aligned to identify regions that are relatively unconserved, and a 1.9 Å crystallographic structure of B. malayi AsnRS was used to identify peptidyl regions that are surface accessible and available for antibody binding. Sequery and SSA (Superpositional Structural Analysis) software was used to analyze which of these peptides was most likely to maintain its native conformation as a synthetic peptide, and its predicted helical structure was confirmed by NMR. A 22‐residue peptide was synthesized to produce murine mAbs. Four IgG1 mAbs were identified that recognized the synthetic peptide and the full‐length parasite AsnRS, but not human AsnRS. The specificity and affinity of mAbs was confirmed by Western blot, immunohistochemistry, surface plasmon resonance, and enzyme inhibition assays. These results support the success of structural modeling to choose peptides for raising selective antibodies that bind to the native protein.
Science | 2000
Denis A. Proshlyakov; Michelle A. Pressler; Catherine DeMaso; Joseph F. Leykam; David L. DeWitt; Gerald T. Babcock
Journal of Biological Chemistry | 2001
Elena Shpak; Elisar Barbar; Joseph F. Leykam; Marcia J. Kieliszewski
Proceedings of the National Academy of Sciences of the United States of America | 1999
Elena Shpak; Joseph F. Leykam; Marcia J. Kieliszewski
Journal of Biological Chemistry | 1995
Marcia J. Kieliszewski; Malcolm A. O'Neill; Joseph F. Leykam; Ron Orlando