Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph Gannon is active.

Publication


Featured researches published by Joseph Gannon.


Cell | 2013

Growth Differentiation Factor 11 Is a Circulating Factor that Reverses Age-Related Cardiac Hypertrophy

Francesco Loffredo; Matthew L. Steinhauser; Steven M. Jay; Joseph Gannon; James R. Pancoast; Pratyusha Yalamanchi; Manisha Sinha; Claudia Dall’Osso; Danika Mei Po Khong; J Shadrach; Christine M. Miller; Britta Swebilius Singer; Alex Stewart; Nikolaos Psychogios; Robert E. Gerszten; Adam J. Hartigan; Mi-Jeong Kim; Thomas Serwold; Amy J. Wagers; Richard T. Lee

The most common form of heart failure occurs with normal systolic function and often involves cardiac hypertrophy in the elderly. To clarify the biological mechanisms that drive cardiac hypertrophy in aging, we tested the influence of circulating factors using heterochronic parabiosis, a surgical technique in which joining of animals of different ages leads to a shared circulation. After 4 weeks of exposure to the circulation of young mice, cardiac hypertrophy in old mice dramatically regressed, accompanied by reduced cardiomyocyte size and molecular remodeling. Reversal of age-related hypertrophy was not attributable to hemodynamic or behavioral effects of parabiosis, implicating a blood-borne factor. Using modified aptamer-based proteomics, we identified the TGF-β superfamily member GDF11 as a circulating factor in young mice that declines with age. Treatment of old mice to restore GDF11 to youthful levels recapitulated the effects of parabiosis and reversed age-related hypertrophy, revealing a therapeutic opportunity for cardiac aging.


Circulation | 2007

Local Delivery of Protease-Resistant Stromal Cell Derived Factor-1 for Stem Cell Recruitment After Myocardial Infarction

Vincent F.M. Segers; Tomotake Tokunou; Luke J. Higgins; Catherine MacGillivray; Joseph Gannon; Richard T. Lee

Background— Local delivery of chemotactic factors represents a novel approach to tissue regeneration. However, successful chemokine protein delivery is challenged by barriers including the rapid diffusion of chemokines and cleavage of chemokines by proteases that are activated in injured tissues. Stromal cell–derived factor-1 (SDF-1) is a well-characterized chemokine for attracting stem cells and thus a strong candidate for promoting regeneration. However, SDF-1 is cleaved by exopeptidases and matrix metalloproteinase-2, generating a neurotoxin implicated in some forms of dementia. Methods and Results— We designed a new chemokine called S-SDF-1(S4V) that is resistant to matrix metalloproteinase-2 and exopeptidase cleavage but retains chemotactic bioactivity, reducing the neurotoxic potential of native SDF-1. To deliver S-SDF-1(S4V), we expressed and purified fusion proteins to tether the chemokine to self-assembling peptides, which form nanofibers and allow local delivery. Intramyocardial delivery of S-SDF-1(S4V) after myocardial infarction recruited CXCR4+/c-Kit+ stem cells (46±7 to 119±18 cells per section) and increased capillary density (from 169±42 to 283±27 per 1 mm2). Furthermore, in a randomized, blinded study of 176 rats with myocardial infarction, nanofiber delivery of the protease-resistant S-SDF-1(S4V) improved cardiac function (ejection fraction increased from 34.0±2.5% to 50.7±3.1%), whereas native SDF-1 had no beneficial effects. Conclusions— The combined advances of a new, protease-resistant SDF-1 and nanofiber-mediated delivery promoted recruitment of stem cells and improved cardiac function after myocardial infarction. These data demonstrate that driving chemotaxis of stem cells by local chemokine delivery is a promising new strategy for tissue regeneration.


Journal of Clinical Investigation | 2005

Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers

Patrick C.H. Hsieh; Michael E. Davis; Joseph Gannon; Catherine MacGillivray; Richard T. Lee

Endothelial cells can protect cardiomyocytes from injury, but the mechanism of this protection is incompletely described. Here we demonstrate that protection of cardiomyocytes by endothelial cells occurs through PDGF-BB signaling. PDGF-BB induced cardiomyocyte Akt phosphorylation in a time- and dose-dependent manner and prevented apoptosis via PI3K/Akt signaling. Using injectable self-assembling peptide nanofibers, which bound PDGF-BB in vitro, sustained delivery of PDGF-BB to the myocardium at the injected sites for 14 days was achieved. A blinded and randomized study in 96 rats showed that injecting nanofibers with PDGF-BB, but not nanofibers or PDGF-BB alone, decreased cardiomyocyte death and preserved systolic function after myocardial infarction. A separate blinded and randomized study in 52 rats showed that PDGF-BB delivered with nanofibers decreased infarct size after ischemia/reperfusion. PDGF-BB with nanofibers induced PDGFR-beta and Akt phosphorylation in cardiomyocytes in vivo. These data demonstrate that endothelial cells protect cardiomyocytes via PDGF-BB signaling and that this in vitro finding can be translated into an effective in vivo method of protecting myocardium after infarction. Furthermore, this study shows that injectable nanofibers allow precise and sustained delivery of proteins to the myocardium with potential therapeutic benefits.


Circulation-heart Failure | 2009

Interleukin-33 Prevents Apoptosis and Improves Survival After Experimental Myocardial Infarction through ST2 Signaling

Kenjiro Seki; Shoji Sanada; Anastacia Kudinova; Matthew L. Steinhauser; Vandna Handa; Joseph Gannon; Richard T. Lee

Background—ST2 is an interleukin (IL)-1 receptor family member with membrane-bound (ST2L) and soluble (sST2) isoforms, and sST2 is a biomarker for poor outcome in patients with myocardial infarction (MI). IL-33, the recently discovered ligand for ST2, activates nuclear factor &kgr;B and thus may regulate apoptotic cell death. We tested the hypothesis that IL-33 is cardioprotective after MI through ST2 signaling. Methods and Results—IL-33 protected cultured cardiomyocytes from hypoxia-induced apoptosis, and this cardioprotection was partially inhibited by sST2. IL-33 induced expression of the antiapoptotic factors XIAP, cIAP1, and survivin. To define the cardioprotective role of IL-33 in vivo, we performed a blinded and randomized study of ischemia/reperfusion in rats. IL-33 reduced cardiomyocyte apoptosis, suppressed caspase-3 activity, and increased expression of IAP family member proteins. IL-33 decreased both infarct and fibrosis volumes at 15 days; furthermore, both echocardiographic and hemodynamic studies revealed that IL-33 improved ventricular function. To determine whether cardioprotection by IL-33 is mediated through ST2 signaling, a randomized and blinded study of ST2−/− versus wild-type littermate mice was performed in 98 mice subjected to MI. At 4 weeks after MI, IL-33 reduced ventricular dilation and improved contractile function in wild-type mice but not in ST2−/− mice. Finally, IL-33 improved survival after MI in wild-type but not in ST2−/− mice. Conclusion—IL-33 prevents cardiomyocyte apoptosis and improves cardiac function and survival after MI through ST2 signaling.


Circulation | 2006

Local Controlled Intramyocardial Delivery of Platelet-Derived Growth Factor Improves Postinfarction Ventricular Function Without Pulmonary Toxicity

Patrick C.H. Hsieh; Catherine MacGillivray; Joseph Gannon; Francisco U. Cruz; Richard T. Lee

Background— Local delivery methods can target therapies to specific tissues and potentially avoid toxicity to other organs. Platelet-derived growth factor can protect the myocardium, but it also plays an important role in promoting pulmonary hypertension. It is not known whether local myocardial delivery of platelet-derived growth factor during myocardial infarction (MI) can lead to sustained cardiac benefit without causing pulmonary hypertension. Methods and Results— We performed a randomized and blinded experiment of 127 rats that survived experimental MI or sham surgery. We delivered platelet-derived growth factor (PDGF)-BB with self-assembling peptide nanofibers (NFs) to provide controlled release within the myocardium. There were 6 groups with n≥20 in each group: sham, sham+NF, sham+NF/PDGF, MI, MI+NF, and MI+NF/PDGF. Serial echocardiography from 1 day to 3 months showed significant improvement of ventricular fractional shortening, end-systolic dimension, and end-diastolic dimension with local PDGF delivery (P<0.05 for MI+NF/PDGF versus MI or MI+NF). Catheterization at 4 months revealed improved ventricular function in the controlled delivery group (left ventricular end-diastolic pressure, cardiac index, +dP/dt, −dP/dt, and time constant of exponential decay all P<0.05 for MI+NF/P versus MI or MI+NF). Infarcted myocardial volume was reduced by NF/PDGF therapy (34.0±13.3% in MI, 28.9±12.9% in MI+NF, and 12.0±5.8% in MI+NF/PDGF; P<0.001). There was no evidence of pulmonary toxicity from the therapy, with no differences in right ventricular end-systolic pressure, right ventricular dP/dt, bromodeoxyuridine staining, or pulmonary artery medial wall thickness. Conclusions— Intramyocardial delivery of PDGF by self-assembling peptide NFs leads to long-term improvement in cardiac performance after experimental infarction without apparent pulmonary toxicity. Local myocardial protection may allow prevention of heart failure without systemic toxicity.


Circulation | 2004

Thioredoxin-Interacting Protein Controls Cardiac Hypertrophy Through Regulation of Thioredoxin Activity

Jun Yoshioka; P. Christian Schulze; Mihaela Cupesi; Jeremy Sylvan; Catherine MacGillivray; Joseph Gannon; Hayden Huang; Richard T. Lee

Background—Although cellular redox balance plays an important role in mechanically induced cardiac hypertrophy, the mechanisms of regulation are incompletely defined. Because thioredoxin is a major intracellular antioxidant and can also regulate redox-dependent transcription, we explored the role of thioredoxin activity in mechanically overloaded cardiomyocytes in vitro and in vivo. Methods and Results—Overexpression of thioredoxin induced protein synthesis in cardiomyocytes (127±5% of controls, P < 0.01). Overexpression of thioredoxin-interacting protein (Txnip), an endogenous thioredoxin inhibitor, reduced protein synthesis in response to mechanical strain (89±5% reduction, P < 0.01), phenylephrine (80±3% reduction, P < 0.01), or angiotensin II (80±4% reduction, P < 0.01). In vivo, myocardial thioredoxin activity increased 3.5-fold compared with sham controls after transverse aortic constriction (P < 0.01). Aortic constriction did not change thioredoxin expression but reduced Txnip expression by 40% (P < 0.05). Gene transfer studies showed that cells that overexpress Txnip develop less hypertrophy after aortic constriction than control cells in the same animals (28.1±5.2% reduction versus noninfected cells, P < 0.01). Conclusions—Thus, even though thioredoxin is an antioxidant, activation of thioredoxin participates in the development of pressure-overload cardiac hypertrophy, demonstrating the dual function of thioredoxin as both an antioxidant and a signaling protein. These results also support the emerging concept that the thioredoxin inhibitor Txnip is a critical regulator of biomechanical signaling.


Circulation Research | 2007

Targeted Deletion of Thioredoxin-Interacting Protein Regulates Cardiac Dysfunction in Response to Pressure Overload

Jun Yoshioka; Kenichi Imahashi; Scott A. Gabel; William A. Chutkow; Aurora A. Burds; Joseph Gannon; P. Christian Schulze; Catherine MacGillivray; Robert E. London; Elizabeth Murphy; Richard T. Lee

Biomechanical overload induces cardiac hypertrophy and heart failure, and reactive oxygen species (ROS) play a role in both processes. Thioredoxin-Interacting Protein (Txnip) is encoded by a mechanically-regulated gene that controls cell growth and apoptosis in part through interaction with the endogenous dithiol antioxidant thioredoxin. Here we show that Txnip is a critical regulator of the cardiac response to pressure overload. We generated inducible cardiomyocyte-specific and systemic Txnip-null mice (Txnip-KO) using Flp/frt and Cre/loxP technologies. Compared with littermate controls, Txnip-KO hearts had attenuated cardiac hypertrophy and preserved left ventricular (LV) contractile reserve through 4 weeks of pressure overload; however, the beneficial effects were not sustained and Txnip deletion ultimately led to maladaptive LV remodeling at 8 weeks of pressure overload. Interestingly, these effects of Txnip deletion on cardiac performance were not accompanied by global changes in thioredoxin activity or ROS; instead, Txnip-KO hearts had a robust increase in myocardial glucose uptake. Thus, deletion of Txnip plays an unanticipated role in myocardial energy homeostasis rather than redox regulation. These results support the emerging concept that the function of Txnip is not as a simple thioredoxin inhibitor but as a metabolic control protein.


Developmental Cell | 2015

Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration

Ahmed I. Mahmoud; Caitlin C. O’Meara; Matthew Gemberling; Long Zhao; Donald M. Bryant; Ruimao Zheng; Joseph Gannon; Lei Cai; Wen-Yee Choi; Gregory F. Egnaczyk; Caroline E. Burns; C. Geoffrey Burns; Calum A. MacRae; Kenneth D. Poss; Richard T. Lee

Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte proliferation following injury. Specifically, pharmacological inhibition of cholinergic nerve function reduces cardiomyocyte proliferation in the injured hearts of both zebrafish and neonatal mice. Direct mechanical denervation impairs heart regeneration in neonatal mice, which was rescued by the administration of neuregulin 1 (NRG1) and nerve growth factor (NGF) recombinant proteins. Transcriptional analysis of mechanically denervated hearts revealed a blunted inflammatory and immune response following injury. These findings demonstrate that nerve function is required for both zebrafish and mouse heart regeneration.


Circulation-heart Failure | 2011

Stromal Cell-Derived Factor-1 Retention and Cardioprotection for Ischemic Myocardium

Sachiko Kanki; Vincent F. M. Segers; Weitao Wu; Rahul Kakkar; Joseph Gannon; Stanislas U. Sys; Anthony Sandrasagra; Richard T. Lee

Background—Stromal cell-derived factor-1 (SDF-1) is a chemoattractant of stem/progenitor cells, and several studies have shown that SDF-1 may improve ventricular function after infarction. SDF-1 is cleaved by proteases including matrix metalloproteinase-2 (MMP-2) and CD26/dipeptidylpeptidase-4 (DPP-4), which are activated in injured tissues. Methods and Results—We investigated the biodistribution and functional roles of SDF-1 in experimental ischemia/reperfusion injury in rats. Radiolabeled SDF-1 given by intracoronary injection was selectively concentrated in ischemic myocardium. The enhanced uptake of SDF-1 in ischemic myocardium was not mediated by its receptor, CXCR4. Mass spectrometry and Western analyses showed that SDF-1 was cleaved by DPP-4 in plasma and myocardium, whereas a bioengineered MMP-2/DPP-4–resistant form of SDF-1, SSDF-1(S4V), was highly stable. A single dose of SSDF-1(S4V) exhibited greater potency for cardioprotection than wild-type SDF-1. SSDF-1(S4V) improved cardiac function in rats even after a 3-hour ischemic period. Conclusions—These results show that a single dose of protease-resistant SSDF-1(S4V) after myocardial infarction leads to dramatic improvement in angiogenesis and ventricular function even 3 hours after the onset of ischemia, revealing a simple, clinically feasible approach to prevention of heart failure.


Journal of Molecular and Cellular Cardiology | 2015

A systematic analysis of neonatal mouse heart regeneration after apical resection

Donald M. Bryant; Caitlin C. O'Meara; Nhi Ngoc Ho; Joseph Gannon; Lei Cai; Richard T. Lee

The finding that neonatal mice are able to regenerate myocardium after apical resection has recently been questioned. We determined if heart regeneration is influenced by the size of cardiac resection and whether surgical retraction of the ventricular apex results in an increase in cardiomyocyte cell cycle activity. We performed moderate or large apical ventricular resections on neonatal mice and quantified scar infiltration into the left ventricular wall at 21 days post-surgery. Moderately resected hearts had 15±2% of the wall infiltrated by a collagen scar; significantly greater scar infiltration (23±4%) was observed in hearts with large resections. Resected hearts had higher levels of cardiomyocyte cell cycle activity relative to sham hearts. Surgically retracting the ventricle often resulted in fibrosis and induced cardiomyocyte cell cycle activity that were comparable to that of resected hearts. We conclude that apical resection in neonatal mice induces cardiomyocyte cell cycle activity and neomyogenesis, although scarring can occur. Surgical technique and definition of approach to assessing the extent of regeneration are both critical when using the neonatal mouse apical resection model.

Collaboration


Dive into the Joseph Gannon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Loffredo

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Jun Yoshioka

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caitlin C. O'Meara

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Calum A. MacRae

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Donald M. Bryant

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Merry L. Lindsey

University of Mississippi Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge