Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph Gera is active.

Publication


Featured researches published by Joseph Gera.


Molecular Cancer Therapeutics | 2005

Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade

Yijiang Shi; Huajun Yan; Patrick Frost; Joseph Gera; Alan Lichtenstein

Mammalian target of rapamycin (mTOR) inhibitors, such as rapamycin and CCI-779, have shown preclinical potential as therapy for multiple myeloma. By inhibiting expression of cell cycle proteins, these agents induce G1 arrest. However, by also inhibiting an mTOR-dependent serine phosphorylation of insulin receptor substrate-1 (IRS-1), they may enhance insulin-like growth factor-I (IGF-I) signaling and downstream phosphatidylinositol 3-kinase (PI3K)/AKT activation. This may be a particular problem in multiple myeloma where IGF-I-induced activation of AKT is an important antiapoptotic cascade. We, therefore, studied AKT activation in multiple myeloma cells treated with mTOR inhibitors. Rapamycin enhanced basal AKT activity, AKT phosphorylation, and PI3K activity in multiple myeloma cells and prolonged activation of AKT induced by exogenous IGF-I. CCI-779, used in a xenograft model, also resulted in multiple myeloma cell AKT activation in vivo. Blockade of IGF-I receptor function prevented rapamycins activation of AKT. Furthermore, rapamycin prevented serine phosphorylation of IRS-1, enhanced IRS-1 association with IGF-I receptors, and prevented IRS-1 degradation. Although similarly blocking IRS-1 degradation, proteasome inhibitors did not activate AKT. Thus, mTOR inhibitors activate PI3-K/AKT in multiple myeloma cells; activation depends on basal IGF-R signaling; and enhanced IRS-1/IGF-I receptor interactions secondary to inhibited IRS-1 serine phosphorylation may play a role in activation of the cascade. In cotreatment experiments, rapamycin inhibited myeloma cell apoptosis induced by PS-341. These results provide a caveat for future use of mTOR inhibitors in myeloma patients if they are to be combined with apoptosis-inducing agents.


Journal of Biological Chemistry | 2004

AKT Activity Determines Sensitivity to Mammalian Target of Rapamycin (mTOR) Inhibitors by Regulating Cyclin D1 and c-myc Expression

Joseph Gera; Ingo K. Mellinghoff; Yijiang Shi; Matthew Rettig; Chris Tran; Jung-hsin Hsu; Charles L. Sawyers; Alan Lichtenstein

Prior work demonstrates that AKT activity regulates sensitivity of cells to G1 arrest induced by mammalian target of rapamycin (mTOR) inhibitors such as rapamycin and CCI-779. To investigate this, a novel high-throughput microarray polysome analysis was performed to identify genes whose mRNA translational efficiency was differentially affected following mTOR inhibition. The analysis also allowed the assessment of steady-state transcript levels. We identified two transcripts, cyclin D1 and c-myc, which exhibited differential expression in an AKT-dependent manner: High levels of activated AKT resulted in rapamycin-induced down-regulation of expression, whereas low levels resulted in up-regulation of expression. To ectopically express these proteins we exploited the finding that the p27kip1 mRNA was efficiently translated in the face of mTOR inhibition irrespective of AKT activity. Thus, the p27kip1 5′-untranslated region was fused to the cyclin D1 and c-myc coding regions and these constructs were expressed in cells. In transfected cells, expression of cyclin D1 or c-myc was not decreased by rapamycin. Most importantly, this completely converted sensitive cells to a phenotype resistant to G1 arrest. Furthermore, the AKT-dependent differential expression patterns of these two genes was also observed in a mouse xenograft model following in vivo treatment with CCI-779. These results identify two critical downstream molecular targets whose expression is regulated by AKT activity and whose down-regulation is required for rapamycin/CCI-779 sensitivity.


Cancer Research | 2007

mTORC2 Activity Is Elevated in Gliomas and Promotes Growth and Cell Motility via Overexpression of Rictor

Janine Masri; Andrew Bernath; Jheralyn Martin; Oak D. Jo; Raffi Vartanian; Alexander Funk; Joseph Gera

mTORC2 is a multimeric kinase composed of the mammalian target of rapamycin kinase (mTOR), mLST8, mSin1, and rictor. The complex is insensitive to acute rapamycin exposure and has shown functions in controlling cell growth and actin cytoskeletal assembly. mTORC2 has recently been shown to phosphorylate and activate Akt. Because approximately 70% of gliomas harbor high levels of activated Akt, we investigated whether mTORC2 activity was elevated in gliomas. In this study, we found that mTORC2 activity was elevated in glioma cell lines as well as in primary tumor cells as compared with normal brain tissue (P < 0.05). Moreover, we found that rictor protein and mRNA levels were also elevated and correlated with increased mTORC2 activity. Overexpression of rictor in cell lines led to increased mTORC2 assembly and activity. These lines exhibited increased anchorage-independent growth in soft agar, increased S-phase cell cycle distribution, increased motility, and elevated integrin beta(1) and beta(3) expression. In contrast, small interfering RNA-mediated knockdown of rictor inhibited these oncogenic activities. Protein kinase C alpha (PKC alpha) activity was shown to be elevated in rictor-overexpressing lines but reduced in rictor-knockdown clones, consistent with the known regulation of actin organization by mTORC2 via PKC alpha. Xenograft studies using these cell lines also supported a role for increased mTORC2 activity in tumorigenesis and enhanced tumor growth. In summary, these data suggest that mTORC2 is hyperactivated in gliomas and functions in promoting tumor cell proliferation and invasive potential due to increased complex formation as a result of the overexpression of rictor.


Trends in Cell Biology | 2001

Towards an understanding of complex protein networks

Chandra L. Tucker; Joseph Gera; Peter Uetz

Large-scale two-hybrid screens have generated a wealth of information describing potential protein--protein interactions. When compiled with data from systematic localizations of proteins, mutant screens and other functional tests, a network of interactions among proteins and between proteins and other components of eukaryotic cells can be deduced. These networks can be viewed as maps of the cell, depicting potential signaling pathways and interactive complexes. Most importantly, they provide potential clues to the function of previously uncharacterized proteins. Focusing on recent experiments, we explore these protein-interaction studies and the maps derived from such efforts.


Oncogene | 2006

Tristetraprolin regulates Cyclin D1 and c- Myc mRNA stability in response to rapamycin in an Akt-dependent manner via p38 MAPK signaling

M Marderosian; Anushree Sharma; Alexander Funk; Raffi Vartanian; Janine Masri; Oak D. Jo; Joseph Gera

The differential expression of the critical cell cycle control proteins cyclin D1 and c-myc has been shown to result in Akt-dependent hypersensitivity of tumor cells to mTOR inhibitors. We have previously demonstrated that the differential utilization of internal ribosome entry sites within the mRNAs of these transcripts allows maintenance of protein synthesis in the face of rapamycin (rapa) exposure in an Akt-dependent manner. Here, we demonstrate that in addition to this mechanism, cyclin D1 and c-myc mRNA stability is also coordinately regulated following rapa treatment depending on Akt activity status. We identify A/U-rich response elements within the 3′ untranslated regions (UTRs) of these transcripts, which confer the observed differential stabilities and show that the RNA-binding protein, tristetraprolin (TTP), interacts with these elements. We also present evidence that TTP accumulates in response to rapa exposure, binds to the cis-acting elements within the cyclin D1 and c-myc 3′ UTRs and is differentially serine phosphorylated in an Akt-dependent manner. Furthermore, the differential phosphorylation status of TTP results in its sequestration by 14-3-3 proteins in quiescent Akt-containing cells. Finally, siRNA-mediated knockdown of TTP expression or inhibiting a known regulator of TTP phosphorylation, p38 MAP kinase, abolishes the effects on cyclin D1 and c-myc mRNA stability. We assume that the differential control of cyclin D1 and c-myc mRNA stability and translational efficiency constitutes a coordinate response to rapa contributing to the maintenance of expression of these determinants in rapa-resistant quiescent Akt-containing cells following exposure.


Cancer Research | 2006

Mechanism by Which Mammalian Target of Rapamycin Inhibitors Sensitize Multiple Myeloma Cells to Dexamethasone-Induced Apoptosis

Huajun Yan; Patrick Frost; Yijiang Shi; Bao Hoang; Sanjai Sharma; Myrna Fisher; Joseph Gera; Alan Lichtenstein

Mammalian target of rapamycin (mTOR) inhibitors curtail cap-dependent translation. However, they can also induce post-translational modifications of proteins. We assessed both effects to understand the mechanism by which mTOR inhibitors like rapamycin sensitize multiple myeloma cells to dexamethasone-induced apoptosis. Sensitization was achieved in multiple myeloma cells irrespective of their PTEN or p53 status, enhanced by activation of AKT, and associated with stimulation of both intrinsic and extrinsic pathways of apoptosis. The sensitizing effect was not due to post-translational modifications of the RAFTK kinase, Jun kinase, p38 mitogen-activated protein kinase, or BAD. Sensitization was also not associated with a rapamycin-mediated increase in glucocorticoid receptor reporter expression. However, when cap-dependent translation was prevented by transfection with a mutant 4E-BP1 construct, which is resistant to mTOR-induced phosphorylation, cells responded to dexamethasone with enhanced apoptosis, mirroring the effect of coexposure to rapamycin. Thus, sensitization is mediated by inhibition of cap-dependent translation. A high-throughput screening for translational efficiency identified several antiapoptotic proteins whose translation was inhibited by rapamycin. Immunoblot assay confirmed rapamycin-induced down-regulated expressions of XIAP, CIAP1, HSP-27, and BAG-3, which may play a role in the sensitization to apoptosis. Studies in a xenograft model showed synergistic in vivo antimyeloma effects when dexamethasone was combined with the mTOR inhibitor CCI-779. Synergistic effects were associated with an enhanced multiple myeloma cell apoptosis in vivo. This study supports the strategy of combining dexamethasone with mTOR inhibitors in multiple myeloma and identifies a mechanism by which the synergistic effect is achieved.


Blood | 2010

Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor

Bao Hoang; Patrick Frost; Yijiang Shi; Eileen Belanger; Angelica Benavides; Gholam Pezeshkpour; Susanna Cappia; Tommasina Guglielmelli; Joseph Gera; Alan Lichtenstein

Although preclinical work with rapalogs suggests potential in treatment of multiple myeloma (MM), they have been less successful clinically. These drugs allostearically inhibit the mammalian target of rapamycin kinase primarily curtailing activity of the target of rapamycin complex (TORC)1. To assess if the mammalian target of rapamycin within the TORC2 complex could be a better target in MM, we tested a new agent, pp242, which prevents activation of TORC2 as well as TORC1. Although comparable to rapamycin against phosphorylation of the TORC1 substrates p70S6kinase and 4E-BP-1, pp242 could also inhibit phosphorylation of AKT on serine 473, a TORC2 substrate, while rapamycin was ineffective. pp242 was also more effective than rapamycin in achieving cytoreduction and apoptosis in MM cells. In addition, pp242 was an effective agent against primary MM cells in vitro and growth of 8226 cells in mice. Knockdown of the TORC2 complex protein, rictor, was deleterious to MM cells further supporting TORC2 as the critical target for pp242. TORC2 activation was frequently identified in primary specimens by immunostaining for AKT phosphorylation on serine 473. Potential mechanisms of up-regulated TORC2 activity in MM were stimulation with interleukin-6 or insulin-like growth factor 1, and phosphatase and tensin homolog or RAS alterations. Combining pp242 with bortezomib led to synergistic anti-MM effects. These results support TORC2 as a therapeutic target in MM.


Journal of Biological Chemistry | 2008

Heterogeneous Nuclear Ribonucleoprotein A1 Regulates Cyclin D1 and c-myc Internal Ribosome Entry Site Function through Akt Signaling

Oak D. Jo; Jheralyn Martin; Andrew Bernath; Janine Masri; Alan Lichtenstein; Joseph Gera

The translation of the cyclin D1 and c-myc mRNAs occurs via internal ribosome entry site (IRES)-mediated initiation under conditions of reduced eIF-4F complex formation and Akt activity. Here we identify hnRNP A1 as an IRES trans-acting factor that regulates cyclin D1 and c-myc IRES activity, depending on the Akt status of the cell. hnRNP A1 binds both IRESs in vitro and in intact cells and enhances in vitro IRES-dependent reporter expression. Akt regulates this IRES activity by inducing phosphorylation of hnRNP A1 on serine 199. Serine 199-phosphorylated hnRNP A1 binds to the IRESs normally but is unable to support IRES activity in vitro. Reducing expression levels of hnRNP A1 or overexpressing a dominant negative version of the protein markedly inhibits rapamycin-stimulated IRES activity in cells and correlated with redistribution of cyclin D1 and c-myc transcripts from heavy polysomes to monosomes. Importantly, knockdown of hnRNP A1 also renders quiescent Akt-containing cells sensitive to rapamycin-induced G1 arrest. These results support a role for hnRNP A1 in mediating rapamycin-induced alterations of cyclin D1 and c-myc IRES activity in an Akt-dependent manner and provide the first direct link between Akt and the regulation of IRES activity.


Biochemical and Biophysical Research Communications | 2008

Hsp70 associates with Rictor and is required for mTORC2 formation and activity.

Jheralyn Martin; Janine Masri; Andrew Bernath; Robert N. Nishimura; Joseph Gera

mTORC2 is a multiprotein kinase composed of mTOR, mLST8, PRR5, mSIN1 and Rictor. The complex is insensitive to rapamycin and has demonstrated functions controlling cell growth, motility, invasion and cytoskeletal assembly. mTORC2 is the major hydrophobic domain kinase which renders Akt fully active via phosphorylation on serine 473. We isolated Hsp70 as a putative Rictor interacting protein in a yeast two-hybrid assay and confirmed this interaction via co-immunoprecipitation and colocalization experiments. In cells expressing an antisense RNA targeting Hsp70, mTORC2 formation and activity were impaired. Moreover, in cells lacking Hsp70 expression, mTORC2 activity was inhibited following heat shock while controls demonstrated increased mTORC2 activity. These differential effects on mTORC2 activity were specific, in that mTORC1 did not demonstrate Hsp70-dependent alterations under these conditions. These data suggest that Hsp70 is a component of mTORC2 and is required for proper assembly and activity of the kinase both constitutively and following heat shock.


Oncogene | 2004

Interleukin-6 activates phosphoinositol-3' kinase in multiple myeloma tumor cells by signaling through RAS-dependent and, separately, through p85-dependent pathways.

Jung-hsin Hsu; Yijiang Shi; Patrick Frost; Huajun Yan; Bao Hoang; Sanjai Sharma; Joseph Gera; Alan Lichtenstein

The IL-6-induced activation of the phosphatidylinositol-3′ kinase (PI3-K)/AKT cascade in multiple myeloma (MM) cells is critical for tumor cell proliferation and viability. Since the IL-6 receptor does not contain binding sites for the p85 regulatory portion of PI3-K, intermediate molecules must play a role. Coimmunoprecipitation studies in MM cell lines demonstrated the IL-6-induced formation of two independent PI3-K-containing complexes: one containing p21 RAS but not STAT-3 and a second containing STAT-3 but not RAS. Both complexes demonstrated IL-6-induced lipid kinase activity. IL-6 also generated kinase activity in a mutant p110 molecule that could not bind p85. Use of dominant-negative (DN) constructs confirmed the presence of two independent pathways of activation: a DN RAS prevented the IL-6-induced generation of lipid kinase activity in the mutant p110 molecule but had no effect on activity generated in the STAT-3-containing complex. In contrast, a DN p85 prevented the generation of kinase activity in the STAT-3-containing complex but had no effect on activity generated in the p110 molecule. Both DN constructs significantly prevented the IL-6-induced activation of AKT. MM cells expressing activating RAS mutations demonstrated enhanced IL-6-independent growth and constitutive PI3-K activity. These data indicate two potential independent pathways of PI3-K/AKT activation in MM cells: one mediated via signaling through RAS which is independent of p85 and a second mediated via p85 and due to a STAT-3-containing complex.

Collaboration


Dive into the Joseph Gera's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yijiang Shi

University of California

View shared research outputs
Top Co-Authors

Avatar

Patrick Frost

University of California

View shared research outputs
Top Co-Authors

Avatar

Bao Hoang

University of California

View shared research outputs
Top Co-Authors

Avatar

Brent Holmes

University of California

View shared research outputs
Top Co-Authors

Avatar

Janine Masri

University of California

View shared research outputs
Top Co-Authors

Avatar

Andrew Bernath

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge