Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph H. Bouton is active.

Publication


Featured researches published by Joseph H. Bouton.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass

Chunxiang Fu; Jonathan R. Mielenz; Xirong Xiao; Yaxin Ge; Choo Yieng Hamilton; Miguel Á. Rodríguez; Fang Chen; Marcus Foston; Arthur J. Ragauskas; Joseph H. Bouton; Richard A. Dixon; Zeng-Yu Wang

Switchgrass is a leading dedicated bioenergy feedstock in the United States because it is a native, high-yielding, perennial prairie grass with a broad cultivation range and low agronomic input requirements. Biomass conversion research has developed processes for production of ethanol and other biofuels, but they remain costly primarily because of the intrinsic recalcitrance of biomass. We show here that genetic modification of switchgrass can produce phenotypically normal plants that have reduced thermal-chemical (≤180 °C), enzymatic, and microbial recalcitrance. Down-regulation of the switchgrass caffeic acid O-methyltransferase gene decreases lignin content modestly, reduces the syringyl:guaiacyl lignin monomer ratio, improves forage quality, and, most importantly, increases the ethanol yield by up to 38% using conventional biomass fermentation processes. The down-regulated lines require less severe pretreatment and 300–400% lower cellulase dosages for equivalent product yields using simultaneous saccharification and fermentation with yeast. Furthermore, fermentation of diluted acid-pretreated transgenic switchgrass using Clostridium thermocellum with no added enzymes showed better product yields than obtained with unmodified switchgrass. Therefore, this apparent reduction in the recalcitrance of transgenic switchgrass has the potential to lower processing costs for biomass fermentation-derived fuels and chemicals significantly. Alternatively, such modified transgenic switchgrass lines should yield significantly more fermentation chemicals per hectare under identical process conditions.


Bioenergy Research | 2011

Downregulation of Cinnamyl Alcohol Dehydrogenase (CAD) Leads to Improved Saccharification Efficiency in Switchgrass

Chunxiang Fu; Xirong Xiao; Yajun Xi; Yaxin Ge; Fang Chen; Joseph H. Bouton; Richard A. Dixon; Zeng-Yu Wang

The bioconversion of carbohydrates in the herbaceous bioenergy crop, switchgrass (Panicum virgatum L.), is limited by the associated lignins in the biomass. The cinnamyl alcohol dehydrogenase (CAD) gene encodes a key enzyme which catalyzes the last step of lignin monomer biosynthesis. Transgenic switchgrass plants were produced with a CAD RNAi gene construct under the control of the maize ubiquitin promoter. The transgenic lines showed reduced CAD expression levels, reduced enzyme activities, reduced lignin content, and altered lignin composition. The modification of lignin biosynthesis resulted in improved sugar release and forage digestibility. Significant increases of saccharification efficiency were obtained in most of the transgenic lines with or without acid pretreatment. A negative correlation between lignin content and sugar release was found among these transgenic switchgrass lines. The transgenic materials have the potential to allow for improved efficiency of cellulosic ethanol production.


Theoretical and Applied Genetics | 1993

Development of an RFLP map in diploid alfalfa.

E. Charles Brummer; Joseph H. Bouton; Gary Kochert

SummaryWe have developed a restriction fragment length polymorphism (RFLP) linkage map in diploid alfalfa (Medicago sativa L.) to be used as a tool in alfalfa improvement programs. An F2 mapping population of 86 individuals was produced from a cross between a plant of the W2xiso population (M. sativa ssp. sativa) and a plant from USDA PI440501 (M. sativa ssp. coerulea). The current map contains 108 cDNA markers covering 467.5 centimorgans. The short length of the map is probably due to low recombination in this cross. Marker order may be maintained in other populations even though the distance between clones may change. About 50% of the mapped loci showed segregation distortion, mostly toward excess heterozygotes. This is circumstantial evidence supporting the maximum heterozygote theory which states that relative vigor is dependent on maximizing the number of loci with multiple alleles. The application of the map to tetraploid populations is discussed.


Theoretical and Applied Genetics | 2000

Mapping of simple sequence repeat (SSR) DNA markers in diploid and tetraploid alfalfa

N. Diwan; Joseph H. Bouton; Gary Kochert; Perry B. Cregan

Abstract Cultivated alfalfa (Medicago sativa) is an autotetraploid. However, all three existing alfalfa genetic maps resulted from crosses of diploid alfalfa. The current study was undertaken to evaluate the use of Simple Sequence Repeat (SSR) DNA markers for mapping in diploid and tetraploid alfalfa. Ten SSR markers were incorporated into an existing F2 diploid alfalfa RFLP map and also mapped in an F2 tetraploid population. The tetraploid population had two to four alleles in each of the loci examined. The segregation of these alleles in the tetraploid mapping population generally was clear and easy to interpret. Because of the complexity of tetrasomic linkage analysis and a lack of computer software to accommodate it, linkage relationships at the tetraploid level were determined using a single-dose allele (SDA) analysis, where the presence or absence of each allele was scored independently of the other alleles at the same locus. The SDA diploid map was also constructed to compare mapping using SDA to the standard co-dominant method. Linkage groups were generally conserved among the tetraploid and the two diploid linkage maps, except for segments where severe segregation distortion was present. Segregation distortion, which was present in both tetraploid and diploid populations, probably resulted from inbreeding depression. The ease of analysis together with the abundance of SSR loci in the alfalfa genome indicated that SSR markers should be a useful tool for mapping tetraploid alfalfa.


Bioenergy Research | 2008

Genetic Diversity in Switchgrass Collections Assessed by EST-SSR Markers

B. Narasimhamoorthy; Malay C. Saha; T. Swaller; Joseph H. Bouton

Switchgrass (Panicum virgatum L.), is a warm season C4 perennial grass, native to North American tall grass prairies. The high biomass production potential of switchgrass with low inputs makes it an excellent choice as a sustainable bioenergy crop. The objective of this study was to determine the genetic variability within and among 31 switchgrass populations obtained from Germplasm Resources Information Network (GRIN). Six plants from each population (186 genotypes) were characterized with 24 conserved grass expressed sequence tag-simple sequence repeats (EST-SSR) and 39 switchgrass EST-SSR markers. The partitioning of variance components based on the analysis of molecular variance (AMOVA) revealed that the variability within population was significantly higher (80%) than among populations (20%). Pair-wise genetic distance estimates based on SSR data revealed dissimilarity coefficients for genotypes ranging from 0.45 to 0.81. The uplands and lowlands were generally grouped in distinct sub-clusters. The genotypes were grouped into the different adaptive zones based on the geographical locations of the collections. Ploidy estimation showed that 20 of the accessions were tetraploid, four of them were octoploids and the remaining seven had mixed ploidy levels. Flow cytometry analysis of genotypes within cultivars collected from commercial seed sources did not always support the ploidy mixtures that were found in GRIN collections. Three genotypes of two accessions that clustered differently from other genotypes of the same accessions also had different ploidy levels.


Theoretical and Applied Genetics | 1991

RFLP variation in diploid and tetraploid alfalfa

E. C. Brummer; Gary Kochert; Joseph H. Bouton

SummaryAlfalfa (Medicago sativa L.) is a major forage crop throughout the world. Although alfalfa has many desirable traits, continued breeding is required to incorporate pest resistances and other traits. We conducted this study to determine the amount of restriction fragment length polymorphism (RFLP) variability present within and between diploid and tetraploid alfalfa populations, and whether or not this variability is sufficient for construction of an RFLP map. Diploid plants from M. sativa ssp. falcata, ssp. coerulea, and ssp. sativa and tetraploid spp. sativa cultivars ‘Apollo,’ ‘Florida 77,’ and ‘Spredor 2’ were included. A total of 19 cDNA clones was probed onto genomic Southern blots containing DNA digested by EcoRI, HindIII, or BamHI. Phylogenetic trees were produced, based on parsimony analysis of shared restriction fragments. Evidence for extensive gene duplication was found; most probes detected complex patterns of restriction fragments. Large amounts of variation are present within all diploid subspecies. M. sativa ssp. falcata plants formed clusters distinct from ssp. sativa or ssp. coerulea plants, which were not distinctly clustered. Some M. sativa ssp. falcata plants were more similar to the other groups than to other plants within ssp. falcata. Variation among tetraploid cultivars showed that Florida 77 and Apollo had more similarities than either showed with Spredor 2. All three cultivars showed large within-population variation, with Apollo being the most diverse and Spredor 2 the least. Based on these results, development of an RFLP map at the diploid level appears possible. Also, differentiation of cultivars, particularly ones of divergent origin, seems possible based on RFLP patterns.


Genetic Resources and Crop Evolution | 2006

Molecular Markers for the Classification of Switchgrass ( Panicum virgatum L.) Germplasm and to Assess Genetic Diversity in Three Synthetic Switchgrass Populations

Ali M. Missaoui; Andrew H. Paterson; Joseph H. Bouton

Information regarding the amount of genetic diversity is necessary to enhance the effectiveness of breeding programs and germplasm conservation efforts. Genetic variation between 21 switchgrass genotypes randomly selected from two lowland (‘Alamo’ and ‘Kanlow’) and one upland (‘Summer’) synthetic cultivars were estimated using restriction fragment length polymorphism (RFLP) markers. Comparison of 85 RFLP loci revealed 92% polymorphism between at least two genotypes from the upland and lowland ecotypes. Within ecotypes, the upland genotypes showed higher polymorphism than lowland genotypes (64% vs. 56%). ‘Kanlow’ had a lower percent of polymorphic loci than ‘Alamo’ (52% vs. 60%). Jaccard distances revealed higher genetic diversity between upland and lowland ecotypes than between genotypes within each ecotype. Hierarchical cluster analysis using Wards minimum variance grouped the genotypes into two major clusters, one representing the upland group and the other the lowland group. Phylogenetic analysis of chloroplast non-coding region trnL (UAA) intron sequences from 34 switchgrass accessions (6 upland cultivars, 2 lowland cultivars, and 26 accessions of unknown affiliation) produced a neighbor-joining dendrogram comprised of two major clusters with 99% bootstrap support. All accessions grouped in the same cluster with the lowland cultivars (‘Alamo’ and ‘Kanlow’) had a deletion of 49 nucleotides. Phenotypic identification of greenhouse-grown plants showed that all accessions with the deletion are of the lowland type. The deletion in trnL (UAA) sequences appears to be specific to lowland accessions and should be useful as a DNA marker for the classification of upland and lowland germplasm.


Plant Science | 2009

Improving phosphorus acquisition of white clover (Trifolium repens L.) by transgenic expression of plant-derived phytase and acid phosphatase genes.

Xue-Feng Ma; Elane Wright; Yaxin Ge; Jeremey Bell; Yajun Xi; Joseph H. Bouton; Zeng-Yu Wang

Phosphate is one of the least available macronutrients restricting crop production in many ecosystems. A phytase gene (MtPHY1) and a purple acid phosphatase gene (MtPAP1), both isolated from the model legume Medicago truncatula, were introduced into white clover (Trifolium repens L.) by Agrobacterium-mediated transformation. The transgenes were driven by the constitutive CaMV35S promoter or the root-specific MtPT1 promoter. Transcripts were detected in roots of the transgenic plants. Phytase or acid phosphatase (APase) activities in root apoplasts of the transgenic plants were increased up to three-fold compared to the wild type control. After the plants were grown 80 days in sand pots supplied with organic phosphorus (Po) as the sole P source, dry weights of shoot tissues of the best performing transgenic plants almost doubled that of the control and were comparable to the counterparts supplied with inorganic phosphorus (Pi). Relative biomass production of the transgenics under Po treatment was over 90% and 80% of that from the Pi treatment when the plants were grown in hydroponics (40 days) and sand pots (80 days), respectively. In contrast, biomass of the wild type controls under Po treatment was only about 50% of the Pi treatment in either hydroponic cultures or sand pots. In addition, shoot P concentrations of the transgenic plants were significantly increased compared to the control. Transgenic plants accumulated much higher amounts of total P (up to 2.6-fold after 80 days of growth) than the control in Po supplied sand pots. The results showed that transgenic expression of MtPHY1 or MtPAP1 in white clover plants increased their abilities of utilizing organic phosphorus in response to P deficiency.


Plant Cell Reports | 2008

Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa.

Pierluigi Barone; Daniele Rosellini; Peter R. LaFayette; Joseph H. Bouton; Fabio Veronesi; Wayne A. Parrott

Alfalfa is very sensitive to soil acidity and its yield and stand duration are compromised due to inhibited root growth and reduced nitrogen fixation caused by Al toxicity. Soil improvement by liming is expensive and only partially effective, and conventional plant breeding for Al tolerance has had limited success. Because tobacco and papaya plants overexpressing Pseudomonas aeruginosa citrate synthase (CS) have been reported to exhibit enhanced tolerance to Al, alfalfa was engineered by introducing the CS gene controlled by the Arabidopsis Act2 constitutive promoter or the tobacco RB7 root-specific promoter. Fifteen transgenic plants were assayed for exclusion of Al from the root tip, for internal citrate content, for growth in in vitro assays, or for shoot and root growth in either hydroponics or in soil assays. Overall, only the soil assays yielded consistent results. Based on the soil assays, two transgenic events were identified that were more aluminum-tolerant than the non-transgenic control, confirming that citrate synthase overexpression can be a useful tool to help achieve aluminum tolerance.


Plant Physiology | 2011

From Model to Crop: Functional Analysis of a STAY-GREEN Gene in the Model Legume Medicago truncatula and Effective Use of the Gene for Alfalfa Improvement

Chuanen Zhou; Lu Han; Catalina I. Pislariu; Jin Nakashima; Chunxiang Fu; Qingzhen Jiang; Li Quan; Elison B. Blancaflor; Yuhong Tang; Joseph H. Bouton; Michael K. Udvardi; Guangmin Xia; Zeng-Yu Wang

Medicago truncatula has been developed into a model legume. Its close relative alfalfa (Medicago sativa) is the most widely grown forage legume crop in the United States. By screening a large population of M. truncatula mutants tagged with the transposable element of tobacco (Nicotiana tabacum) cell type1 (Tnt1), we identified a mutant line (NF2089) that maintained green leaves and showed green anthers, central carpels, mature pods, and seeds during senescence. Genetic and molecular analyses revealed that the mutation was caused by Tnt1 insertion in a STAY-GREEN (MtSGR) gene. Transcript profiling analysis of the mutant showed that loss of the MtSGR function affected the expression of a large number of genes involved in different biological processes. Further analyses revealed that SGR is implicated in nodule development and senescence. MtSGR expression was detected across all nodule developmental zones and was higher in the senescence zone. The number of young nodules on the mutant roots was higher than in the wild type. Expression levels of several nodule senescence markers were reduced in the sgr mutant. Based on the MtSGR sequence, an alfalfa SGR gene (MsSGR) was cloned, and transgenic alfalfa lines were produced by RNA interference. Silencing of MsSGR led to the production of stay-green transgenic alfalfa. This beneficial trait offers the opportunity to produce premium alfalfa hay with a more greenish appearance. In addition, most of the transgenic alfalfa lines retained more than 50% of chlorophylls during senescence and had increased crude protein content. This study illustrates the effective use of knowledge gained from a model system for the genetic improvement of an important commercial crop.

Collaboration


Dive into the Joseph H. Bouton's collaboration.

Top Co-Authors

Avatar

Malay C. Saha

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zeng-Yu Wang

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge