Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph H. Jeong is active.

Publication


Featured researches published by Joseph H. Jeong.


Molecular Cell | 2009

Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation.

Bin Zheng; Joseph H. Jeong; John M. Asara; Yuan Ying Yuan; Scott R. Granter; Lynda Chin; Lewis C. Cantley

The LKB1-AMPK signaling pathway serves as a critical cellular sensor coupling energy homeostasis to cell growth, proliferation, and survival. However, how tumor cells suppress this signaling pathway to gain growth advantage under conditions of energy stress is largely unknown. Here, we show that AMPK activation is suppressed in melanoma cells with the B-RAF V600E mutation and that downregulation of B-RAF signaling activates AMPK. We find that in these cells LKB1 is phosphorylated by ERK and Rsk, two kinases downstream of B-RAF, and that this phosphorylation compromises the ability of LKB1 to bind and activate AMPK. Furthermore, expression of a phosphorylation-deficient mutant of LKB1 allows activation of AMPK and inhibits melanoma cell proliferation and anchorage-independent cell growth. Our findings provide a molecular linkage between the LKB1-AMPK and the RAF-MEK-ERK pathways and suggest that suppression of LKB1 function by B-RAF V600E plays an important role in B-RAF V600E-driven tumorigenesis.


Nature Medicine | 2012

Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma

Lawrence N. Kwong; James C. Costello; Huiyun Liu; Shan Jiang; Timothy L. Helms; Aliete E Langsdorf; David Jakubosky; Giannicola Genovese; Florian Muller; Joseph H. Jeong; Ryan P Bender; Gerald C. Chu; Keith T. Flaherty; Jennifer A. Wargo; James J. Collins; Lynda Chin

The discovery of potent inhibitors of the BRAF proto-oncogene has revolutionized therapy for melanoma harboring mutations in BRAF, yet NRAS-mutant melanoma remains without an effective therapy. Because direct pharmacological inhibition of the RAS proto-oncogene has thus far been unsuccessful, we explored systems biology approaches to identify synergistic drug combination(s) that can mimic RAS inhibition. Here, leveraging an inducible mouse model of NRAS-mutant melanoma, we show that pharmacological inhibition of mitogen-activated protein kinase kinase (MEK) activates apoptosis but not cell-cycle arrest, which is in contrast to complete genetic neuroblastoma RAS homolog (NRAS) extinction, which triggers both of these effects. Network modeling pinpointed cyclin-dependent kinase 4 (CDK4) as a key driver of this differential phenotype. Accordingly, combined pharmacological inhibition of MEK and CDK4 in vivo led to substantial synergy in therapeutic efficacy. We suggest a gradient model of oncogenic NRAS signaling in which the output is gated, resulting in the decoupling of discrete downstream biological phenotypes as a result of incomplete inhibition. Such a gated signaling model offers a new framework to identify nonobvious coextinction target(s) for combined pharmacological inhibition in NRAS-mutant melanomas.


Journal of Virology | 2001

Differential regulation of the overlapping Kaposi's sarcoma-associated herpesvirus vGCR (orf74) and LANA (orf73) promoters.

Joseph H. Jeong; James F. Papin; Dirk P. Dittmer

ABSTRACT Similar to that of other herpesviruses, Kaposis sarcoma-associated herpesvirus (KSHV/HHV-8) lytic replication destroys the host cell, while the virus can persist in a latent state in synchrony with the host. During latency only a few genes are transcribed, and the question becomes one of what determines latent versus lytic gene expression. Here we undertake a detailed analysis of the latency-associated nuclear antigen (LANA [orf73]) promoter (LANAp). We characterized a minimal region that is necessary and sufficient to maintain high-level transcription in all tissues tested, including primary endothelial cells and B cells, which are the suspected natural host for KSHV. We show that in transient-transfection assays LANAp mimics the expression pattern observed for the authentic promoter in the context of the KSHV episome. Unlike other KSHV promoters tested thus far, LANAp is not affected by tetradecanoyl phorbol acetate or viral lytic cycle functions. It is, however, subject to control by LANA itself and cellular regulatory factors, such as p53. This is in contrast to the K14/vGCR (orf74) promoter, which overlaps LANAp and directs transcription on the opposite strand. We isolated a minimal cis-regulatory region sufficient for K14/vGCR promoter activity and show that it, too, mimics the regulation observed for the authentic viral promoter. In particular, we demonstrate that its activity is absolutely dependent on the immediate-early transactivator orf50, the KSHV homolog of the Epstein-Barr virus Rta transactivator.


Journal of Clinical Investigation | 2006

The latency-associated nuclear antigen of Kaposi sarcoma–associated herpesvirus induces B cell hyperplasia and lymphoma

Farnaz D. Fakhari; Joseph H. Jeong; Yogita Kanan; Dirk P. Dittmer

Kaposi sarcoma-associated herpesvirus (KSHV) is a human lymphotropic herpesvirus. It is implicated in B cell neoplasias such as primary effusion lymphoma and multicentric Castleman disease in AIDS patients. The KSHV latency-associated nuclear antigen (LANA) is consistently expressed in all KSHV-associated tumor cells and was shown to bind the tumor suppressor proteins p53 and pRb. To test LANAs contribution to lymphomagenesis in vivo we generated transgenic mice expressing LANA under the control of its own promoter, which is B cell specific. All of the transgenic mice developed splenic follicular hyperplasia due to an expansion of IgM+ IgD+ B cells and showed increased germinal center formation. We also observed lymphomas, implying that LANA can activate B cells and provide the first step toward lymphomagenesis.


Cancer Research | 2004

The Tumor Microenvironment Controls Primary Effusion Lymphoma Growth in Vivo

Michelle R. Staudt; Yogita Kanan; Joseph H. Jeong; James F. Papin; Rebecca Hines-Boykin; Dirk P. Dittmer

Certain lymphomas in AIDS patients, such as primary effusion lymphoma (PEL), are closely associated with the lymphotropic γ herpes virus Kaposi’s sarcoma-associated herpes virus (KSHV), also called human herpesvirus 8. The virus is thought to be essential for tumorigenesis, yet systems to investigate PEL in vivo are rare. Here we describe PEL tumorigenesis in a new xenograft model. Embedded in Matrigel, PEL cells formed rapid, well-organized, and angiogenic tumors after s.c. implantation of C.B.17 SCID mice. Without Matrigel we did not observe comparable tumors, which implies that extracellular support and/or signaling aids PEL. All of the tumors maintained the KSHV genome, and the KSHV latent protein LANA/orf73 was uniformly expressed. However, the expression profile for key lytic mRNAs, as well as LANA-2/vIRF3, differed between tissue culture and sites of implantation. We did not observe a net effect of ganciclovir on PEL growth in culture or as xenograft. These findings underscore the importance of the microenvironment for PEL tumorigenesis and simplify the preclinical evaluation of potential anticancer agents.


Journal of Virology | 2004

Comparison of the Rta/Orf50 Transactivator Proteins of Gamma-2-Herpesviruses

Blossom Damania; Joseph H. Jeong; Brian S. Bowser; Scott M. DeWire; Michelle R. Staudt; Dirk P. Dittmer

ABSTRACT The viral immediate-early transactivator Rta/Orf50 is necessary and sufficient to initiate Kaposis sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV-8) reactivation from latently infected cells. Since Rta/Orf50 is conserved among all known gamma-2-herpesviruses, we investigated whether the murine gamma-68-herpesvirus (MHV-68) and rhesus monkey rhadinovirus (RRV) homologs can functionally substitute for KSHV Rta/Orf50. (i) Our comparison of 12 KSHV promoters showed that most responded to all three Rta/Orf50proteins, but three promoters (vGPCR, K8, and gB) responded only to the KSHV Rta/Orf50 transactivator. Overall, the activation of KSHV promoters was higher with KSHV Rta than with the RRV and MHV-68 Rta. (ii) Only the primate Rta/Orf50 homologs were able to interfere with human p53-depedent transcriptional activation. (iii) Transcriptional profiling showed that the KSHV Rta/Orf50 was more efficient than its homologs in inducing KSHV lytic transcription from the latent state. These results suggest that the core functionality of Rta/Orf50 is conserved and independent of its host, but the human protein has evolved additional, human-specific capabilities.


PLOS ONE | 2008

BRAF activation initiates but does not maintain invasive prostate adenocarcinoma

Joseph H. Jeong; Zhenxiong Wang; Alexander S. Guimaraes; Xuesong Ouyang; Jose L. Figueiredo; Zhihu Ding; Shan Jiang; Isil Guney; Gyeong Hoon Kang; Eyoung Shin; William C. Hahn; Massimo Loda; Cory Abate-Shen; Ralph Weissleder; Lynda Chin

Prostate cancer is the second leading cause of cancer-related deaths in men. Activation of MAP kinase signaling pathway has been implicated in advanced and androgen-independent prostate cancers, although formal genetic proof has been lacking. In the course of modeling malignant melanoma in a tyrosinase promoter transgenic system, we developed a genetically-engineered mouse (GEM) model of invasive prostate cancers, whereby an activating mutation of BRAFV600E–a mutation found in ∼10% of human prostate tumors–was targeted to the epithelial compartment of the prostate gland on the background of Ink4a/Arf deficiency. These GEM mice developed prostate gland hyperplasia with progression to rapidly growing invasive adenocarcinoma without evidence of AKT activation, providing genetic proof that activation of MAP kinase signaling is sufficient to drive prostate tumorigenesis. Importantly, genetic extinction of BRAFV600E in established prostate tumors did not lead to tumor regression, indicating that while sufficient to initiate development of invasive prostate adenocarcinoma, BRAFV600E is not required for its maintenance.


Journal of Virology | 2002

Tissue Specificity of the Kaposi's Sarcoma-Associated Herpesvirus Latent Nuclear Antigen (LANA/orf73) Promoter in Transgenic Mice

Joseph H. Jeong; Rebecca Hines-Boykin; John D. Ash; Dirk P. Dittmer

ABSTRACT Kaposis sarcoma-associated herpesvirus (KSHV/HHV-8) is a human-oncogenic herpesvirus. Cells from KSHV-associated tumors, such as Kaposis sarcoma (KS) and primary effusion lymphoma (PEL), are of endothelial and B-cell origin, respectively. KSHV persists indefinitely in these cell lineages during latent infection. Indeed, cellular latency is a hallmark of all herpesviruses that is intimately linked to their pathogenesis. We previously characterized the promoter for the KSHV latency-associated nuclear antigen LANA/orf73. LANA is required for latent episome maintenance and has also been implicated in oncogenesis. Hence, regulation of LANA expression is critical to KSHV persistence. We find that a region extending to bp −1299 upstream of the LANA transcription start site is able to drive lacZ-reporter gene expression in several lines of transgenic mice. In agreement with KSHVs natural tropism, we detected reporter gene expression in CD19-positive B cells but not in CD3-positive T cells. We also detected expression in the kidney and, at a lower level, in the liver. In contrast to KS tumors, transgene expression was localized to kidney tubular epithelium rather than vascular endothelial cells. This suggests that our promoter fragment contains all cis-regulatory elements sufficient for B-cell specificity but not those required for endothelial specificity. Alternatively, while the trans-acting factors required for LANA expression in B cells are evolutionarily conserved, those that regulate endothelial cell-specific expression are unique to humans. Our in vivo studies address a conundrum in KSHV biology: in culture, KSHV is able to infect a variety of cell types indiscriminately, while in healthy latent carriers KSHV is found in B lymphocytes. The transgenic-mouse experiments reported here suggest that tissue-restricted LANA gene expression could explain B-cell-specific viral persistence.


Cancer Research | 2011

PD05-07: Prospective Validation and Characterization of HER2 Positive Circulating Tumor Cells in Patients with HER2 Negative Metastatic Breast Cancer.

Erin M. Olson; Ludmila M. Flores; Julie Najita; C Curley; Joseph H. Jeong; K Murray; Jennifer Savoie; Ian E. Krop

Background: Circulating tumor cells (CTCs) with evidence of HER2 amplification can occur in patients (pts) with clinically HER2 negative metastatic breast cancer. While these findings potentially have profound implications for CTCs as a biomarker for treatment, prospective validation and characterization of this subgroup is necessary. Methods: We created a prospective cohort of pts with metastatic breast cancer that were HER2 negative by IHC and/or FISH on all available primary and metastatic biopsies. Blood samples were collected at study entry and then again at ≥ 3 weeks if available. CTCs were enumerated by a modification of the Veridex CellSearch Profile kit. FISH was performed on each CTC sample and reported as positive if the HER2/CEP17 ratio was ≥ 2.0. Analyses are descriptive. Results: 66 pts were consented for study and this report includes the 65 pts with detectable CTCs. Median number of CTCs was 226 (range 112 to > 3000). At initial testing, 23 pts (35%) had HER2 positive CTCs, median HER2:CEP17 ratio of 3.4. 50% (11 of 22) of the pts with lobular or ductal/lobular histology had HER2 amplified CTCs, compared to only 27% (10 of 36) of patients with ductal histology. Women with ER positive disease had HER2 positive CTCs in 40% of cases (20 of 49) compared to 19% of ER negative pts (3 of 16). To assess concordance of HER2 amplification of CTCs over time, 34 pts consented to be retested at a median 5.9 weeks after initial screening (range 3.3 - 17 weeks) and all but 1 had detectable CTCs. Baseline characteristics of these 34 pts were similar to the original population, with HER2 amplified CTCs detected in 35% (12 of 34) pts at initial screening. HER2 positive CTCs were concordant at time of retesting in 83% (10 of 12) pts; the 2 women with discordant CTCs were receiving HER2 directed therapy. Of the pts with HER2 negative CTCs at initial screening, 81% (17 of 21) continued to have HER2 negative CTCs at time of retesting. Conclusion: We observed a higher prevalence of HER2 positive CTCs among pts with ER positive disease and evidence of lobular histology. The presence of HER2 positive CTCs is concordant over time in the majority of pts. The functional significance of HER2 positive CTCs in patients with clinically HER2 negative breast cancer will be tested in a prospective study with HER2−directed therapy. Citation Information: Cancer Res 2011;71(24 Suppl):Abstract nr PD05-07.


Journal of Biological Chemistry | 2004

Regulation and Autoregulation of the Promoter for the Latency-associated Nuclear Antigen of Kaposi's Sarcoma-associated Herpesvirus

Joseph H. Jeong; Joshua Orvis; Jong Wook Kim; Curtis McMurtrey; Rolf Renne; Dirk P. Dittmer

Collaboration


Dive into the Joseph H. Jeong's collaboration.

Top Co-Authors

Avatar

Dirk P. Dittmer

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Lynda Chin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Shan Jiang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florian Muller

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giannicola Genovese

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge