Joseph Irudayaraj
Purdue University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joseph Irudayaraj.
Journal of Nanobiotechnology | 2005
Gilles K. Kouassi; Joseph Irudayaraj; Gregory S. McCarty
Magnetic nanoparticles (Fe3O4) were synthesized by thermal co-precipitation of ferric and ferrous chlorides. The sizes and structure of the particles were characterized using transmission electron microscopy (TEM). The size of the particles was in the range between 9.7 and 56.4 nm. Cholesterol oxidase (CHO) was successfully bound to the particles via carbodiimide activation. FTIR spectroscopy was used to confirm the binding of CHO to the particles. The binding efficiency was between 98 and 100% irrespective of the amount of particles used. Kinetic studies of the free and bound CHO revealed that the stability and activity of the enzyme were significantly improved upon binding to the nanoparticles. Furthermore, the bound enzyme exhibited a better tolerance to pH, temperature and substrate concentration. The activation energy for free and bound CHO was 13.6 and 9.3 kJ/mol, respectively. This indicated that the energy barrier of CHO activity was reduced upon binding onto Fe3O4 nanoparticles. The improvements observed in activity, stability, and functionality of CHO resulted from structural and conformational changes of the bound enzyme. The study indicates that the stability and activity of CHO could be enhanced via attachment to magnetic nanoparticles and subsequently will contribute to better uses of this enzyme in various biological and clinical applications.
Analytical Chemistry | 2011
Cunlan Guo; Joseph Irudayaraj
Proteins have proven to be particularly attractive as effective ligands in the synthesis of nano- and subnanoscaled materials because of their multiple chelating and functional groups imparting unique functionalities. However, protein-directed fluorescent metal cluster synthesis is still a challenge but a promising area of research. Here, we report on the synthesis of new water-soluble, stable, fluorescent Ag clusters via a facile, green method using denatured bovine serum albumin (dBSA) as a stabilizing agent. The dBSA with its 35 free cysteine residues could contribute to polyvalent interactions with the Ag clusters and serve as effective stabilizing agents for these clusters. The as-prepared Ag clusters showed high fluorescence emission at ∼637 nm and were stable even in 1 M NaCl. The fluorescent Ag clusters were then used in the detection of Hg(2+) with high sensitivity and selectivity. The detection limit was 10 nM in the linear range from 10 nM to 5 μM.
ACS Nano | 2011
Yuling Wang; Jiji Chen; Joseph Irudayaraj
Recent advances in fluorescent metal nanoclusters have spurred tremendous interest in nanomedicine due to the ease of fabrication, excellent biocompatibility, and, more importantly, excellent wavelength-dependent tunability. Herein, we report our findings on fluorescent BSA-protected gold nanoclusters (AuNCs), ∼2 nm in size conjugated with Herceptin (AuNCs-Her), for specific targeting and nuclear localization in ErbB2 over-expressing breast cancer cells and tumor tissue as a novel fluorescent agent for simultaneous imaging and cancer therapy. More interestingly, we found that AuNCs-Her could escape the endolysosomal pathway and enter the nucleus of cancer cells to enhance the therapeutic efficacy of Herceptin. We elucidate the diffusion characteristics (diffusion time and number of diffusers) and concentration of the fluorescing clusters in the nucleus of live cells. Our findings also suggest that the nuclear localization effect of AuNCs-Her enhances the anticancer therapeutic efficacy of Herceptin as evidenced by the induction of DNA damage. This study not only discusses a new nanomaterial platform for nuclear delivery of drugs but also provides important insights on nuclear targeting for enhanced therapy.
Small | 2008
Chungang Wang; Joseph Irudayaraj
Foodborne diseases are associated with five majorpathogens,includingE.coliO157:H7(E.coli)andSalmonellaTyphimurium(S.Typhimurium),andthecostsassociatedwithpreventive and curative measures to combat these five majorpathogens is estimated to be at least
Small | 2010
Chungang Wang; Joseph Irudayaraj
6.9 billion annually,according tothe Economic ResearchService(ERS) in2000.
ACS Nano | 2010
Yuling Wang; Jamie L. Seebald; Daniel P. Szeto; Joseph Irudayaraj
Multifunctional nanoparticles possessing magnetization and near-infrared (NIR) absorption have warranted interest due to their significant applications in magnetic resonance imaging, diagnosis, bioseparation, target delivery, and NIR photothermal ablation. Herein, the site-selective assembly of magnetic nanoparticles onto the ends or ends and sides of gold nanorods with different aspect ratios (ARs) to create multifunctional nanorods decorated with varying numbers of magnetic particles is described for the first time. The resulting hybrid nanoparticles are designated as Fe(3)O(4)-Au(rod)-Fe(3)O(4) nanodumbbells and Fe(3)O(4)-Au(rod) necklacelike constructs with tunable optical and magnetic properties, respectively. These hybrid nanomaterials can be used for multiplex detection and separation because of their tunable magnetic and plasmonic functionality. More specifically, Fe(3)O(4)-Au(rod) necklacelike probes of different ARs are utilized for simultaneous optical detection based on their plasmon properties, magnetic separation, and photokilling of multiple pathogens from a single sample at one time. The combined functionalities of the synthesized probes will open up many exciting opportunities in dual imaging for targeted delivery and photothermal therapy.
ACS Nano | 2011
Kyuwan Lee; Vladimir P. Drachev; Joseph Irudayaraj
Nanoparticles are increasingly being used to investigate biological processes in various animal models due to their versatile chemical, unique optical, and multifunctional properties. In this report we address the biocompatibility and biodistribution of nanoparticle sensors used for Raman chemical imaging in live zebrafish (Danio rerio) embryos. Surface-enhanced Raman scattering (SERS) nanoprobes (NPs) comprising gold nanoparticles (AuNPs) as enhancing substrate and nonfluorescent Raman labels were synthesized and microinjected into zebrafish embryos at the one-cell stage. Raman mapping was performed to assess their distribution in various cell-types and tissues of developing embryo at five different stages between 6 and 96 hpf (hours post-fertilization). Biocompatibility and toxicity studies indicate that the NPs are not toxic and the embryos were found to exhibit normal morphological and gene expression in addition to the proper form and function of major organs such as the heart and vasculature (of 7 day old NPs injected zebrafish embryos). A multiplex in vivo detection protocol was developed by SERS imaging to demonstrate that multiple labels can be detected by Raman mapping in undifferentiated cells as they develop into distinct cell- and tissue-types. The present work is the first to report on multiplex Raman imaging of zebrafish embryos with potential implications in tracking tissue development and biological processes at single molecule sensitivity using appropriate target molecules in vivo.
Chemical Communications | 2011
Yuling Wang; Joseph Irudayaraj
Effective identification of breast cancer stem cells (CSC) benefits from a multiplexed approach to detect cell surface markers that can distinguish this subpopulation, which can invade and proliferate at sites of metastasis. We present a new approach for dual-mode sensing based on targeting using pointer and signal enhancement using enhancer particle networks for detection by surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS). We demonstrate our concept to detect cell surface markers, CD44 and CD24, in three breast cancer cell lines to identify a CD44+/CD24- subpopulation of CSCs. The designed network structure can be well-controlled and has improved sensitivity compared to conventional approaches with ability to detect a single target on the membrane of a living cell. We have also developed a fractal approach to model the dimension of the network structure and developed an empirical relationship to estimate the number of particles in the network and its size. The empirical equation was validated with experiments and finite-difference time-domain simulations, and the cell phenotyping results were found to be in good agreement with published data from conventional sorting by flow cytometry.
Analytical Chemistry | 2009
Sandeep P. Ravindranath; Lisa J. Mauer; Chitrita DebRoy; Joseph Irudayaraj
SERS biosensor for sensitive and selective detection of lead ions (Pb(2+)) based on DNAzyme was developed by taking advantage of the specific catalytic reaction of DNAzyme upon binding to Pb(2+) ions. Detection was accomplished by SERS nanoprobe labeled with DNA and Raman reporters for signal amplification.
New Journal of Physics | 2008
Reuben M. Bakker; Vladimir P. Drachev; Zhengtong Liu; Hsiao-Kuan Yuan; Rasmus Haugstrup Pedersen; Alexandra Boltasseva; Jiji Chen; Joseph Irudayaraj; Alexander V. Kildishev; Vladimir M. Shalaev
Magnetic nanoparticles functionalized with anti-Escherichia coli O157:H7 or anti-Salmonella typhimurium antibodies that can specifically bind to their target organisms were used to isolate E. coli O157:H7 and S. typhimurium separately from a cocktail of bacteria and from food matrixes. The pathogens were then detected using label-free IR fingerprinting. The binding and detection protocol was first validated using a benchtop FT-IR spectrometer and then applied to a portable mid-IR spectrometer to enable this approach as a point-of-detection technology. Highly selective detection was achieved in less than 30 min at both species (E. coli O157:H7 vs S. typhimurium ) and strain (E. coli O157:H7 vs E. coli K12) levels in complex food matrixes (2% milk, spinach extract) with a detection limit of 10(4)-10(5) CFU/mL. The combined approach of functionalized magnetic nanoparticles and IR spectroscopy imparts specificity through spectroscopic fingerprinting and selectivity through species-specific antibodies with an in-built sample extraction step and could be applied in the field for on-site food-borne pathogen monitoring.