Joseph J. Goellner
University of Arkansas for Medical Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joseph J. Goellner.
PLOS ONE | 2008
Charles A. O'Brien; Lilian I. Plotkin; Carlo Galli; Joseph J. Goellner; Arancha R. Gortazar; Matthew R. Allen; Alexander G. Robling; Mary L. Bouxsein; Ernestina Schipani; Charles H. Turner; Robert L. Jilka; Robert S. Weinstein; Stavros C. Manolagas; Teresita Bellido
Osteocytes, former osteoblasts buried within bone, are thought to orchestrate skeletal adaptation to mechanical stimuli. However, it remains unknown whether hormones control skeletal homeostasis through actions on osteocytes. Parathyroid hormone (PTH) stimulates bone remodeling and may cause bone loss or bone gain depending on the balance between bone resorption and formation. Herein, we demonstrate that transgenic mice expressing a constitutively active PTH receptor exclusively in osteocytes exhibit increased bone mass and bone remodeling, as well as reduced expression of the osteocyte-derived Wnt antagonist sclerostin, increased Wnt signaling, increased osteoclast and osteoblast number, and decreased osteoblast apoptosis. Deletion of the Wnt co-receptor LDL related receptor 5 (LRP5) attenuates the high bone mass phenotype but not the increase in bone remodeling induced by the transgene. These findings demonstrate that PTH receptor signaling in osteocytes increases bone mass and the rate of bone remodeling through LRP5-dependent and -independent mechanisms, respectively.
Circulation Research | 2003
Wenning Qin; Amy E. Rudolph; Brian R. Bond; Ricardo Rocha; Eric G. Blomme; Joseph J. Goellner; John W. Funder; Ellen G. McMahon
Abstract— Aldosterone classically promotes unidirectional transepithelial sodium transport, thereby regulating blood volume and blood pressure. Recently, both clinical and experimental studies have suggested additional, direct roles for aldosterone in the cardiovascular system. To evaluate aldosterone activation of cardiomyocyte mineralocorticoid receptors, transgenic mice overexpressing 11&bgr;-hydroxysteroid dehydrogenase type 2 in cardiomyocytes were generated using the mouse &agr;-myosin heavy chain promoter. This enzyme converts glucocorticoids to receptor-inactive metabolites, allowing aldosterone occupancy of cardiomyocyte mineralocorticoid receptors. Transgenic mice were normotensive but spontaneously developed cardiac hypertrophy, fibrosis, and heart failure and died prematurely on a normal salt diet. Eplerenone, a selective aldosterone blocker, ameliorated this phenotype. These studies confirm the deleterious consequences of inappropriate activation of cardiomyocyte mineralocorticoid receptors by aldosterone and reveal a tonic inhibitory role of glucocorticoids in preventing such outcomes under physiological conditions. In addition, these data support the hypothesis that aldosterone blockade may provide additional therapeutic benefit in the treatment of heart failure.
Cell Metabolism | 2010
Elena Ambrogini; Maria Almeida; Marta Martin-Millan; Ji Hye Paik; Ronald A. DePinho; Li Han; Joseph J. Goellner; Robert S. Weinstein; Robert L. Jilka; Charles A. O'Brien; Stavros C. Manolagas
Aging increases oxidative stress and osteoblast apoptosis and decreases bone mass, whereas forkhead box O (FoxO) transcription factors defend against oxidative stress by activating genes involved in free radical scavenging and apoptosis. Conditional deletion of FoxO1, FoxO3, and FoxO4 in 3-month-old mice resulted in an increase in oxidative stress in bone and osteoblast apoptosis and a decrease in the number of osteoblasts, the rate of bone formation, and bone mass at cancellous and cortical sites. The effect of the deletion on osteoblast apoptosis was cell autonomous and resulted from oxidative stress. Conversely, overexpression of a FoxO3 transgene in mature osteoblasts decreased oxidative stress and osteoblast apoptosis and increased osteoblast number, bone formation rate, and vertebral bone mass. We conclude that FoxO-dependent oxidative defense provides a mechanism to handle the oxygen free radicals constantly generated by the aerobic metabolism of osteoblasts and is thereby indispensable for bone mass homeostasis.
PLOS ONE | 2015
Jinhu Xiong; Marilina Piemontese; Melda Onal; Josh Campbell; Joseph J. Goellner; Vladimir Dusevich; Lynda F. Bonewald; Stavros C. Manolagas; Charles A. O’Brien
The cytokine receptor activator of nuclear factor kappa B ligand (RANKL), encoded by the Tnfsf11 gene, is essential for osteoclastogenesis and previous studies have shown that deletion of the Tnfsf11 gene using a Dmp1-Cre transgene reduces osteoclast formation in cancellous bone by more than 70%. However, the Dmp1-Cre transgene used in those studies leads to recombination in osteocytes, osteoblasts, and lining cells making it unclear whether one or more of these cell types produce the RANKL required for osteoclast formation in cancellous bone. Because osteoblasts, osteocytes, and lining cells have distinct locations and functions, distinguishing which of these cell types are sources of RANKL is essential for understanding the orchestration of bone remodeling. To distinguish between these possibilities, we have now created transgenic mice expressing the Cre recombinase under the control of regulatory elements of the Sost gene, which is expressed in osteocytes but not osteoblasts or lining cells in murine bone. Activity of the Sost-Cre transgene in osteocytes, but not osteoblast or lining cells, was confirmed by crossing Sost-Cre transgenic mice with tdTomato and R26R Cre-reporter mice, which express tdTomato fluorescent protein or LacZ, respectively, only in cells expressing the Cre recombinase or their descendants. Deletion of the Tnfsf11 gene in Sost-Cre mice led to a threefold decrease in osteoclast number in cancellous bone and increased cancellous bone mass, mimicking the skeletal phenotype of mice in which the Tnfsf11 gene was deleted using the Dmp1-Cre transgene. These results demonstrate that osteocytes, not osteoblasts or lining cells, are the main source of the RANKL required for osteoclast formation in remodeling cancellous bone.
Neuromolecular Medicine | 2003
Svetlana Vidensky; Yan Zhang; Tracey Hand; Joseph J. Goellner; Alex Shaffer; Peter C. Isakson; Katrin Andreasson
Cyclooxygenases catalyze the first committed step in the formation of prostaglandins and thromboxanes from arachidonic acid. Cyclooxygenase-2 (COX-2), the inducible isoform of cyclooxygenase, is expressed in brain selectively in neurons of hippocampus, cerebral cortex, amygdala, and hypothalamus. Prostaglandins function in many processes in the CNS, including fever induction, nociception, and learning and memory, and are upregulated in paradigms of excitotoxic brain injury such as stroke and epilepsy. To address the varied functions of COX-2 and its prostaglandin products in brain, we have developed a transgenic mouse model in which COX-2 is selectively overexpressed in neurons of the CNS. COX-2 transgenic mice demonstrate elevated levels of all prostaglandins and thromboxane, albeit with a predominant induction of PGE2 over other prostaglandins, followed by more modest inductions of PGI2, and relatively smaller increases in PGF2α, PGD2, and TxB2. We also examined whether increased neuronal production of prostaglandins would affect fever induction in response to the bacterial endotoxin lipopolysaccharide. COX-2 induction in brain endothelium has been previously determined to play an important role in fever induction, and we tested whether neuronal expression of COX-2 in hypothalamus also contributed to the febrile response. We found that in mice expressing transgenic COX-2 in anterior hypothalamus, the febrile response was significantly potentiated in transgenic as compared to non-transgenic mice, with an accelerated onset of fever by 1–2 hours after LPS administration, suggesting a role for neuronally derived COX-2 in the fever response.
Endocrinology | 2014
Seong Min Lee; Kathleen A. Bishop; Joseph J. Goellner; Charles A. O'Brien; J. Wesley Pike
The biological actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are mediated by the vitamin D receptor (VDR), which is expressed in numerous target tissues in a cell type-selective manner. Recent studies using genomic analyses and recombineered bacterial artificial chromosomes (BACs) have defined the specific features of mouse and human VDR gene loci in vitro. In the current study, we introduced recombineered mouse and human VDR BACs as transgenes into mice and explored their expression capabilities in vivo. Individual transgenic mouse strains selectively expressed BAC-derived mouse or human VDR proteins in appropriate vitamin D target tissues, thereby recapitulating the tissue-specific expression of endogenous mouse VDR. The mouse VDR transgene was also regulated by 1,25(OH)2D3 and dibutyryl-cAMP. When crossed into a VDR-null mouse background, both transgenes restored wild-type basal as well as 1,25(OH)2D3-inducible gene expression patterns in the appropriate tissues. This maneuver resulted in the complete rescue of the aberrant phenotype noted in the VDR-null mouse, including systemic features associated with altered calcium and phosphorus homeostasis and disrupted production of parathyroid hormone and fibroblast growth factor 23, and abnormalities associated with the skeleton, kidney, parathyroid gland, and the skin. This study suggests that both mouse and human VDR transgenes are capable of recapitulating basal and regulated expression of the VDR in the appropriate mouse tissues and restore 1,25(OH)2D3 function. These results provide a baseline for further dissection of mechanisms integral to mouse and human VDR gene expression and offer the potential to explore the consequence of selective mutations in VDR proteins in vivo.
Endocrinology | 2014
Seong Min Lee; Joseph J. Goellner; Charles A. O'Brien; J. Wesley Pike
The syndrome of hereditary 1,25-dihydroxyvitamin D-resistant rickets (HVDRR) is a genetic disease of altered mineral homeostasis due to mutations in the vitamin D receptor (VDR) gene. It is frequently, but not always, accompanied by the presence of alopecia. Mouse models that recapitulate this syndrome have been prepared through genetic deletion of the Vdr gene and are characterized by the presence of rickets and alopecia. Subsequent studies have revealed that VDR expression in hair follicle keratinocytes protects against alopecia and that this activity is independent of the proteins ability to bind 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. In the present study, we introduced into VDR-null mice a human VDR (hVDR) bacterial artificial chromosome minigene containing a mutation that converts leucine to serine at amino acid 233 in the hVDR protein, which prevents 1,25(OH)2D3 binding. We then assessed whether this transgene recreated features of the HVDRR syndrome without alopecia. RT-PCR and Western blot analysis in one strain showed an appropriate level of mutant hVDR expression in all tissues examined including skin. The hVDR-L233S mutant failed to rescue the aberrant systemic and skeletal phenotype characteristic of the VDR null mouse due to the inability of the mutant receptor to activate transcription after treatment with 1,25(OH)2D3. Importantly, however, neither alopecia nor the dermal cysts characteristic of VDR-null mice were observed in the skin of these hVDR-L233S mutant mice. This study confirms that we have created a humanized mouse model of HVDRR without alopecia that will be useful in defining additional features of this syndrome and in identifying potential novel functions of the unoccupied VDR.
Journal of Pediatric Gastroenterology and Nutrition | 1982
Florence Moog; Joseph J. Goellner
The development of alkaline phosphatase, maltase, and sucrase activities in the duodenum of the chick embryo was followed in organ culture in chemically defined medium; 14-day duodenum was used in most experiments, with comparisons being made with 18-day tissue. As has been previously shown for the other enzymes, sucrase activity also rises at an accelerated rate in vitro. Since chick sucrase has maltase activity, its increase appears to account for the spontaneous rise of maltase activity; the form of maltase devoid of sucrase activity seems not to be accelerated. Sucrase, sucrase-free maltase, and alkaline phosphatase are all elevated by the addition of insulin to the medium. Intestinal sucrase is well known to be responsive to hydrocortisone, but it has now been found to be unresponsive to thyroxine, except that its dissociation from the brush border is increased at hormone concentrations above 1 nM. Insulin and thyroxine act synergistically on alkaline phosphatase, but the addition of hydrocortisone diminishes the effect of the other two. With sucrase, insulin and hydrocortisone have a synergistic effect which is intensified by addition of thyroxine. The previously demonstrated influence of hydrocortisone on maltase is accounted for by the maltase activity of sucrase. In combination, however, hydrocortisone and thyroxine elevated maltase much more strongly than sucrase, and the highest maltase levels were attained when all three hormones were present.
Human Molecular Genetics | 2016
Daniel Fil; Abigail DeLoach; Shilpi Yadav; Duah Alkam; Melanie MacNicol; Awantika Singh; Cesar M. Compadre; Joseph J. Goellner; Charles A. O’Brien; Tariq Fahmi; Alexei G. Basnakian; Noel Y. Calingasan; Jodi L. Klessner; Flint Beal; Owen M. Peters; Jake Metterville; Robert H. Brown; Karen K.Y. Ling; Frank Rigo; P. Hande Özdinler; Mahmoud Kiaei
The recent identification of profilin1 mutations in 25 familial ALS cases has linked altered function of this cytoskeleton-regulating protein to the pathogenesis of motor neuron disease. To investigate the pathological role of mutant profilin1 in motor neuron disease, we generated transgenic lines of mice expressing human profilin1 with a mutation at position 118 (hPFN1G118V). One of the mouse lines expressing high levels of mutant human PFN1 protein in the brain and spinal cord exhibited many key clinical and pathological features consistent with human ALS disease. These include loss of lower (ventral horn) and upper motor neurons (corticospinal motor neurons in layer V), mutant profilin1 aggregation, abnormally ubiquitinated proteins, reduced choline acetyltransferase (ChAT) enzyme expression, fragmented mitochondria, glial cell activation, muscle atrophy, weight loss, and reduced survival. Our investigations of actin dynamics and axonal integrity suggest that mutant PFN1 protein is associated with an abnormally low filamentous/globular (F/G)-actin ratio that may be the underlying cause of severe damage to ventral root axons resulting in a Wallerian-like degeneration. These observations indicate that our novel profilin1 mutant mouse line may provide a new ALS model with the opportunity to gain unique perspectives into mechanisms of neurodegeneration that contribute to ALS pathogenesis.
Journal of Bone and Mineral Research | 2015
Melda Onal; Kathleen A. Bishop; Hillary C. St. John; Allison L Danielson; Erin M. Riley; Marilina Piemontese; Jinhu Xiong; Joseph J. Goellner; Charles A. O'Brien; J. Wesley Pike
Receptor activator of NF‐κB ligand (RANKL) is a TNFα‐like cytokine that is produced by a diverse set of lineage‐specific cells and is involved in a wide variety of physiological processes that include skeletal remodeling, lymph node organogenesis, mammary gland development, and thermal regulation. Consistent with these diverse functions, control of RANKL expression is accomplished in a cell‐specific fashion via a set of at least 10 regulatory enhancers that are located up to 170 kb upstream of the genes transcriptional start site. Here we examined the in vivo consequence of introducing a contiguous DNA segment containing these components into a genetically deleted RANKL null mouse strain. In contrast to RANKL null littermates, null mice containing the transgene exhibited normalized body size, skeletal development, and bone mass as well as normal bone marrow cavities, normalized spleen weights, and the presence of developed lymph nodes. These mice also manifested normalized reproductive capacity, including the ability to lactate and to produce normal healthy litters. Consistent with this, the transgene restored endogenous‐like RANKL transcript levels in several RANKL‐expressing tissues. Most importantly, restoration of RANKL expression from this segment of DNA was fully capable of rescuing the complex aberrant skeletal and immune phenotype of the RANKL null mouse. RANKL also restored appropriate levels of B220+IgM+ and B220+IgD+ B cells in spleen. Finally, we found that RANKL expression from this transgene was regulated by exogenously administered 1,25(OH)2D3, parathyroid hormone (PTH), and lipopolysaccharide (LPS), thus recapitulating the ability of these same factors to regulate the endogenous gene. These findings fully highlight the properties of the Tnfsf11 gene locus predicted through previous in vitro dissection. We conclude that the mouse Tnfsf11 gene locus identified originally through unbiased chromatin immunoprecipitation with DNA microarray (ChIP‐chip) analysis contains the necessary genetic information to direct appropriate tissue‐specific and factor‐regulated RANKL expression in vivo.