Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph K. Wu is active.

Publication


Featured researches published by Joseph K. Wu.


Chemistry & Biology | 1998

Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis metallo-β-lactamase

Jeffrey H. Toney; Paula M. D. Fitzgerald; Nandini Grover-Sharma; Steven H. Olson; Walter J. May; Jon G. Sundelof; Dana E. Vanderwall; Kelly A. Cleary; Stephan K. Grant; Joseph K. Wu; John W. Kozarich; David L. Pompliano; Gail G. Hammond

BACKGROUND High level resistance to carbapenem antibiotics in gram negative bacteria such as Bacteroides fragilis is caused, in part, by expression of a wide-spectrum metallo-beta-lactamase that hydrolyzes the drug to an inactive form. Co-administration of metallo-beta-lactamase inhibitors to resistant bacteria is expected to restore the antibacterial activity of carbapenems. RESULTS Biphenyl tetrazoles (BPTs) are a structural class of potent competitive inhibitors of metallo-beta-lactamase identified through screening and predicted using molecular modeling of the enzyme structure. The X-ray crystal structure of the enzyme bound to the BPT L-159,061 shows that the tetrazole moiety of the inhibitor interacts directly with one of the two zinc atoms in the active site, replacing a metal-bound water molecule. Inhibition of metallo-beta-lactamase by BPTs in vitro correlates well with antibiotic sensitization of resistant B. fragilis. CONCLUSIONS BPT inhibitors can sensitize a resistant B. fragilis clinical isolate expressing metallo-beta-lactamase to the antibiotics imipenem or penicillin G but not to rifampicin.


Biochemical Journal | 2003

Catalytic properties and inhibition of proline-specific dipeptidyl peptidases II, IV and VII

Barbara Leiting; KellyAnn D. Pryor; Joseph K. Wu; Frank Marsilio; Reshma A. Patel; Charles S. Craik; Jonathan A. Ellman; Richard T. Cummings; Nancy A. Thornberry

There is currently intense interest in the emerging group of proline-specific dipeptidases, and their roles in the regulation of biological processes. Dipeptidyl peptidase IV (DPP-IV) is involved in glucose metabolism by contributing to the regulation of glucagon family peptides and has emerged as a potential target for the treatment of metabolic diseases. Two other proline-specific dipeptidases, DPP-VII (also known as quiescent cell proline dipeptidase) and DPP-II, have unknown functions and have recently been suggested to be identical proteases based on a sequence comparison of human DPP-VII and rat DPP-II (78% identity) [Araki, Li, Yamamoto, Haneda, Nishi, Kikkawa and Ohkubo (2001) J. Biochem. 129, 279-288; Fukasawa, Fukasawa, Higaki, Shiina, Ohno, Ito, Otogoto and Ota (2001) Biochem. J. 353, 283-290]. To facilitate the identification of selective substrates and inhibitors for these enzymes, a complete biochemical profile of these enzymes was obtained. The pH profiles, substrate specificities as determined by positional scanning, Michaelis-Menten constants and inhibition profiles for DPP-VII and DPP-II were shown to be virtually identical, strongly supporting the hypothesis that they are the same protease. In addition, substrate specificities, catalytic constants and IC(50) values were shown to be markedly different from those of DPP-IV. Selective DPP-IV and DPP-VII substrates were identified and they can be used to design selective inhibitors and probe further into the biology of these enzymes.


Bioorganic & Medicinal Chemistry Letters | 2008

Fluoroolefins as amide bond mimics in dipeptidyl peptidase IV inhibitors

Scott D. Edmondson; Lan Wei; Jinyou Xu; Jackie Shang; Shiyao Xu; Jianmei Pang; Ashok Chaudhary; Dennis C. Dean; Huaibing He; Barbara Leiting; Kathryn A. Lyons; Reshma A. Patel; Sangita B. Patel; Giovanna Scapin; Joseph K. Wu; Maria Beconi; Nancy A. Thornberry; Ann E. Weber

The synthesis, selectivity, rat pharmacokinetic profile, and drug metabolism profiles of a series of potent fluoroolefin-derived DPP-4 inhibitors (4) are reported. A radiolabeled fluoroolefin 33 was shown to possess a high propensity to form reactive metabolites, thus revealing a potential liability for this class of DPP-4 inhibitors.


Journal of Medicinal Chemistry | 2008

Discovery of Potent and Selective Dipeptidyl Peptidase IV Inhibitors Derived from [beta]-Aminoamides Bearing Subsituted Triazolopiperazines

Dooseop Kim; Jennifer E. Kowalchick; Linda Brockunier; Emma R. Parmee; George J. Eiermann; Michael H. Fisher; Huaibing He; Barbara Leiting; Kathryn A. Lyons; Giovanna Scapin; Sangita B. Patel; Aleksandr Petrov; KellyAnn D. Pryor; Ranabir Sinha Roy; Joseph K. Wu; Xiaoping Zhang; Matthew J. Wyvratt; Bei B. Zhang; Lan Zhu; Nancy A. Thornberry; Ann E. Weber

A series of beta-aminoamides bearing triazolopiperazines have been discovered as potent, selective, and orally active dipeptidyl peptidase IV (DPP-4) inhibitors by extensive structure-activity relationship (SAR) studies around the triazolopiperazine moiety. Among these, compound 34b with excellent in vitro potency (IC50 = 4.3 nM) against DPP-4, high selectivity over other enzymes, and good pharmacokinetic profiles exhibited pronounced in vivo efficacy in an oral glucose tolerance test (OGTT) in lean mice. On the basis of these properties, compound 34b has been profiled in detail. Further refinement of the triazolopiperazines resulted in the discovery of a series of extremely potent compounds with subnanomolar activity against DPP-4 (42b- 49b), that is, 4-fluorobenzyl-substituted compound 46b, which is notable for its superior potency (IC50 = 0.18 nM). X-ray crystal structure determination of compounds 34b and 46b in complex with DPP-4 enzyme revealed that (R)-stereochemistry at the 8-position of triazolopiperazines is strongly preferred over (S) with respect to DPP-4 inhibition.


Bioorganic & Medicinal Chemistry Letters | 2013

Novel tetrahydropyran analogs as dipeptidyl peptidase IV inhibitors: Profile of clinical candidate (2R,3S,5R)-2-(2,5-difluorophenyl)-5-[2-(methylsulfonyl)-2,6-dihydropyrrolo[3,4-c]pyrazol-5(4H)-yl]tetrahydro-2H-pyran-3-amine (23)

Tesfaye Biftu; Xiaoxia Qian; Ping Chen; Dennis Feng; Giovanna Scapin; Ying-Duo Gao; Jason M. Cox; Ranabir Sinha Roy; George J. Eiermann; Huabing He; Kathy Lyons; Gino Salituro; Sangita B. Patel; Alexander Petrov; Feng Xu; Shiyao Sherrie Xu; Bei Zhang; Charles G. Caldwell; Joseph K. Wu; Ann E. Weber

A series of novel tri-2,3,5-substituted tetrahydropyran analogs were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-4) for the treatment of type 2 diabetes. Optimization of the series provided inhibitors with good DPP-4 potency and selectivity over other peptidases (QPP, DPP8, and FAP). Compound 23, which is very potent, selective, efficacious in the diabetes PD model, and has an excellent pharmacokinetic profile, is selected as a clinical candidate.


Bioorganic & Medicinal Chemistry Letters | 2009

Aminopiperidine-fused imidazoles as dipeptidyl peptidase-IV inhibitors

Scott D. Edmondson; Anthony Mastracchio; Jason M. Cox; George J. Eiermann; Huaibing He; Kathryn A. Lyons; Reshma A. Patel; Sangita B. Patel; Aleksandr Petrov; Giovanna Scapin; Joseph K. Wu; Shiyao Xu; Bing Zhu; Nancy A. Thornberry; Ranabir Sinha Roy; Ann E. Weber

A new series of DPP-4 inhibitors derived from piperidine-fused benzimidazoles and imidazopyridines is described. Optimization of this class of DPP-4 inhibitors led to the discovery of imidazopyridine 34. The potency, selectivity, cross-species DMPK profiles, and in vivo efficacy of 34 is reported.


Analytical Biochemistry | 1984

Renin cleavage of a human kidney renin substrate analogous to human angiotensinogen, H-Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-Val-Ile-His-Ser-OH, that is human renin specific and is resistant to cathepsin D

Martin Poe; Joseph K. Wu; Tsau-Yen Lin; Karst Hoogsteen; Herbert G. Bull; Eve E. Slater

A synthetic tetradecapeptide, H-Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-Val-Ile-His-Ser-OH, which corresponds to the 13 amino terminal residues of human angiotensinogen plus a carboxy terminal serine to replace a suggested site of carbohydrate attachment, has been shown to be a good substrate for human kidney renin. At pH 7.2 and 37 degrees C the KM or Michaelis constant was 8.4 +/- 2.9 microM, and the VM or velocity at infinite tetradecapeptide concentration was 11.3 +/- 2.4 mumol angiotensin I made per hour per milligram renin. The tetradecapeptide was highly resistant to cleavage by mouse submaxillary renin. The tetradecapeptide was also slowly cleaved by human liver cathepsin D, by rabbit lung angiotensin-converting enzyme, and by reconstituted human serum, but did not yield angiotensin I. Thus, this synthetic renin substrate should permit more specific measurement of human kidney renin activity.


Archives of Biochemistry and Biophysics | 1991

The enzymatic activity of human cytotoxic T-lymphocyte granzyme A and cytolysis mediated by cytotoxic T-lymphocytes are potently inhibited by a synthetic antiprotease, FUT-175

Martin Poe; Joseph K. Wu; J.T. Blake; H.J. Zweerink; N.H. Sigal

The synthetic antiprotease, FUT-175 (6-amidino-2-naphthyl-4-guanidinobenzoate), was found to be an extraordinarily potent and rapid inhibitor of human Q31 cytotoxic T-lymphocyte granzyme A. The granzyme A was inhibited in a time-dependent manner with kobs/i = 430,000 +/- 80,000 M-1 s-1. Four other FUT-175 analogs were also found to be potent, rapid Q31 granzyme A inhibitors. All five compounds inhibited Q31 cytotoxic T-lymphocyte-mediated cytolysis of human JY lymphoma cells, but at concentrations far in excess of those needed for granzyme A inhibition. The data presented suggest that postmarketing surveillance of FUT-175 should include a review of possible immunosuppressive side-effects, such as increased susceptibility to viral infections and to neoplastic transformations.


Bioorganic & Medicinal Chemistry Letters | 2008

Discovery of new binding elements in DPP-4 inhibition and their applications in novel DPP-4 inhibitor design.

Gui-Bai Liang; Xiaoxia Qian; Tesfaye Biftu; Suresh B. Singh; Ying-Duo Gao; Giovanna Scapin; Sangita B. Patel; Barbara Leiting; Reshma A. Patel; Joseph K. Wu; Xiaoping Zhang; Nancy A. Thornberry; Ann E. Weber

Probing with tool molecules, and by modeling and X-ray crystallography the binding modes of two structurally distinct series of DPP-4 inhibitors led to the discovery of a rare aromatic fluorine H-bond and the spatial requirement for better biaryl binding in the DPP-4 enzyme active site. These newly found binding elements were successfully incorporated into novel DPP-4 inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2011

Synthesis and evaluation of [(1R)-1-amino-2-(2,5-difluorophenyl)ethyl]cyclohexanes and 4-[(1R)-1-amino-2-(2,5-difluorophenyl)ethyl]piperidines as DPP-4 inhibitors.

Ping Chen; Charles G. Caldwell; Wallace T. Ashton; Joseph K. Wu; Huaibing He; Kathryn A. Lyons; Nancy A. Thornberry; Ann E. Weber

A series of 4-amino cyclohexanes and 4-substituted piperidines were prepared and evaluated for inhibition of DPP-4. Analog 20q displayed both good DPP-4 potency and selectivity against other proteases, while derivative 20k displayed long half life and modest oral bioavailability in rat. The most potent analog, 3-(5-aminocarbonylpyridyl piperidine 53j, displayed excellent DPP-4 activity with good selectivity versus other proline enzymes.

Collaboration


Dive into the Joseph K. Wu's collaboration.

Researchain Logo
Decentralizing Knowledge