Joseph Kuo-Hsiang Tang
Clark University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joseph Kuo-Hsiang Tang.
Nature Communications | 2014
David M. Coles; Yanshen Yang; Yaya Wang; Robert A. Taylor; Semion K. Saikin; Alán Aspuru-Guzik; David G. Lidzey; Joseph Kuo-Hsiang Tang; Jason M. Smith
Strong exciton-photon coupling is the result of a reversible exchange of energy between an excited state and a confined optical field. This results in the formation of polariton states that have energies different from the exciton and photon. We demonstrate strong exciton-photon coupling between light-harvesting complexes and a confined optical mode within a metallic optical microcavity. The energetic anti-crossing between the exciton and photon dispersions characteristic of strong coupling is observed in reflectivity and transmission with a Rabi splitting energy on the order of 150 meV, which corresponds to about 1,000 chlorosomes coherently coupled to the cavity mode. We believe that the strong coupling regime presents an opportunity to modify the energy transfer pathways within photosynthetic organisms without modification of the molecular structure.
Journal of the Royal Society Interface | 2012
Joseph Kuo-Hsiang Tang; Le You; Robert E. Blankenship; Yinjie J. Tang
After feeding microbes with a defined 13C substrate, unique isotopic patterns (isotopic fingerprints) can be formed in their metabolic products. Such labelling information not only can provide novel insights into functional pathways but also can determine absolute carbon fluxes through the metabolic network via metabolic modelling approaches. This technique has been used for finding pathways that may have been mis-annotated in the past, elucidating new enzyme functions, and investigating cell metabolisms in microbial communities. In this review paper, we summarize the applications of 13C approaches to analyse novel cell metabolisms for the past 3 years. The isotopic fingerprints (defined as unique isotopomers useful for pathway identifications) have revealed the operations of the Entner–Doudoroff pathway, the reverse tricarboxylic acid cycle, new enzymes for biosynthesis of central metabolites, diverse respiration routes in phototrophic metabolism, co-metabolism of carbon nutrients and novel CO2 fixation pathways. This review also discusses new isotopic methods to map carbon fluxes in global metabolisms, as well as potential factors influencing the metabolic flux quantification (e.g. metabolite channelling, the isotopic purity of 13C substrates and the isotopic effect). Although 13C labelling is not applicable to all biological systems (e.g. microbial communities), recent studies have shown that this method has a significant value in functional characterization of poorly understood micro-organisms, including species relevant for biotechnology and human health.
Scientific Reports | 2015
Semion K. Saikin; Yadana Khin; Joonsuk Huh; Moataz Hannout; Yaya Wang; Farrokh Zare; Alán Aspuru-Guzik; Joseph Kuo-Hsiang Tang
Living organisms have to adjust to their surrounding in order to survive in stressful conditions. We study this mechanism in one of most primitive creatures – photosynthetic green sulfur bacteria. These bacteria absorb photons very efficiently using the chlorosome antenna complexes and perform photosynthesis in extreme low-light environments. How the chlorosomes in green sulfur bacteria are acclimated to the stressful light conditions, for instance, if the spectrum of light is not optimal for absorption, is unknown. Studying Chlorobaculum tepidum cultures with far-red to near-infrared light-emitting diodes, we found that these bacteria react to changes in energy flow by regulating the amount of light-absorbing pigments and the size of the chlorosomes. Surprisingly, our results indicate that the bacteria can survive in near-infrared lights capturing low-frequency photons by the intermediate units of the light-harvesting complex. The latter strategy may be used by the species recently found near hydrothermal vents in the Pacific Ocean.
Biochemistry | 2014
Shih-Chi Luo; Yadana Khin; Shing-Jong Huang; Yanshen Yang; Tsai-yi Hou; Yuan-Chung Cheng; Hao Ming Chen; Yi-Ying Chin; Chien-Te Chen; Hong-Ji Lin; Joseph Kuo-Hsiang Tang; Jerry C. C. Chan
Green sulfur bacteria, which live in extremely low-light environments, use chlorosomes to harvest light. A chlorosome is the most efficient, and arguably the simplest, light-harvesting antenna complex, which contains hundreds of thousands of densely packed bacteriochlorophylls (BChls). To harvest light efficiently, BChls in a chlorosome form supramolecular aggregates; thus, it is of great interest to determine the organization of the BChls in a chlorosome. In this study, we conducted a (13)C solid-state nuclear magnetic resonance and Mg K-edge X-ray absorption analysis of chlorosomes from wild-type Chlorobaculum tepidum. The X-ray absorption results indicated that the coordination number of the Mg in the chlorosome must be >4, providing evidence that electrostatic interactions formed between the Mg of a BChl and the carbonyl group or the hydroxyl group of the neighboring BChl molecule. According to the intermolecular distance constraints obtained on the basis of (13)C homonuclear dipolar correlation spectroscopy, we determined that the molecular assembly of BChls is dimer-based and that the hydrogen bonds among the BChls are less extensive than commonly presumed because of the twist in the orientation of the BChl dimers. This paper also reports the first (13)C homonuclear correlation spectrum acquired for carotenoids and lipids-which are minor, but crucial, components of chlorosomes-extracted from wild-type Cba. tepidum.
Small | 2017
David M. Coles; Lucas C. Flatten; Thomas Sydney; Emily Hounslow; Semion K. Saikin; Alán Aspuru-Guzik; Vlatko Vedral; Joseph Kuo-Hsiang Tang; Robert A. Taylor; Jason M. Smith; David G. Lidzey
Photosynthetic organisms rely on a series of self-assembled nanostructures with tuned electronic energy levels in order to transport energy from where it is collected by photon absorption, to reaction centers where the energy is used to drive chemical reactions. In the photosynthetic bacteria Chlorobaculum tepidum (Cba. tepidum), a member of the green sulphur bacteria (GSB) family, light is absorbed by large antenna complexes called chlorosomes. The exciton generated is transferred to a protein baseplate attached to the chlorosome, before traveling through the Fenna-Matthews-Olson (FMO) complex to the reaction center. The energy levels of these systems are generally defined by their chemical structure. Here we show that by placing bacteria within a photonic microcavity, we can access the strong exciton-photon coupling regime between a confined cavity mode and exciton states of the chlorosome, whereby a coherent exchange of energy between the bacteria and cavity mode results in the formation of polariton states. The polaritons have an energy distinct from that of the exciton and photon, and can be tuned in situ via the microcavity length. This results in real-time, non-invasive control over the relative energy levels within the bacteria. This demonstrates the ability to strongly influence living biological systems with photonic structures such as microcavities. We believe that by creating polariton states, that are in this case a superposition of a photon and excitons within a living bacteria, we can modify energy transfer pathways and therefore study the importance of energy level alignment on the efficiency of photosynthetic systems.Photosynthetic organisms rely on a series of self-assembled nanostructures with tuned electronic energy levels in order to transport energy from where it is collected by photon absorption, to reaction centers where the energy is used to drive chemical reactions. In the photosynthetic bacteria Chlorobaculum tepidum, a member of the green sulfur bacteria family, light is absorbed by large antenna complexes called chlorosomes to create an exciton. The exciton is transferred to a protein baseplate attached to the chlorosome, before migrating through the Fenna-Matthews-Olson complex to the reaction center. Here, it is shown that by placing living Chlorobaculum tepidum bacteria within a photonic microcavity, the strong exciton-photon coupling regime between a confined cavity mode and exciton states of the chlorosome can be accessed, whereby a coherent exchange of energy between the bacteria and cavity mode results in the formation of polariton states. The polaritons have energy distinct from that of the exciton which can be tuned by modifying the energy of the optical modes of the microcavity. It is believed that this is the first demonstration of the modification of energy levels within living biological systems using a photonic structure.
Archive | 2014
W. Matthew Sattley; Marie Asao; Joseph Kuo-Hsiang Tang; Aaron M. Collins
Heliobacteria are a group of anoxygenic phototrophic bacteria that use a unique pigment, bacteriochlorophyll g, for photosynthetic energy conversion within a type I homodimeric reaction center. Like their nonphotosynthetic relatives the clostridia, heliobacteria have a gram-positive cell structure and can form heat-resistant endospores. Heliobacteria are also unusual in that they are the only anaerobic anoxygenic phototrophs that lack a mechanism for autotrophic growth. Growth of heliobacteria is therefore dependent upon the presence of usable organic carbon sources and occurs either photoheterotrophically or chemotrophically (via pyruvate fermentation). While knowledge of heliobacterial photosynthesis and physiology has steadily increased since the relatively recent discovery of these phototrophs in the 1980s, high-resolution structural data pertaining to features of the heliobacterial photosynthetic apparatus are not yet available. This chapter summarizes our current understanding of energy conservation in heliobacteria as it relates to central carbon metabolism (in both light and dark conditions), electron transport, and light harvesting and photochemistry within the reaction center.
PLOS ONE | 2015
Yaya Wang; Xavier Barbeau; Astha Bilimoria; Patrick Lagüe; Manon Couture; Joseph Kuo-Hsiang Tang
Roseobacter denitrificans is a member of the widespread marine Roseobacter genus. We report the first characterization of a truncated hemoglobin from R. denitrificans (Rd. trHb) that was purified in the heme-bound form from heterologous expression of the protein in Escherichia coli. Rd. trHb exhibits predominantly alpha-helical secondary structure and absorbs light at 412, 538 and 572 nm. The phylogenetic classification suggests that Rd. trHb falls into group II trHbs, whereas sequence alignments indicate that it shares certain important heme pocket residues with group I trHbs in addition to those of group II trHbs. The resonance Raman spectra indicate that the isolated Rd. trHb contains a ferric heme that is mostly 6-coordinate low-spin and that the heme of the ferrous form displays a mixture of 5- and 6-coordinate states. Two Fe-His stretching modes were detected, notably one at 248 cm-1, which has been reported in peroxidases and some flavohemoglobins that contain an Fe-His-Asp (or Glu) catalytic triad, but was never reported before in a trHb. We show that Rd. trHb exhibits a significant peroxidase activity with a (k cat/K m) value three orders of magnitude higher than that of bovine Hb and only one order lower than that of horseradish peroxidase. This enzymatic activity is pH-dependent with a pK a value ~6.8. Homology modeling suggests that residues known to be important for interactions with heme-bound ligands in group II trHbs from Mycobacterium tuberculosis and Bacillus subtilis are pointing toward to heme in Rd. trHb. Genomic organization and gene expression profiles imply possible functions for detoxification of reactive oxygen and nitrogen species in vivo. Altogether, Rd. trHb exhibits some distinctive features and appears equipped to help the bacterium to cope with reactive oxygen/nitrogen species and/or to operate redox biochemistry.
Microorganisms | 2017
Jennifer Baker; Carli Riester; Blair Skinner; Austin Newell; Wesley D. Swingley; Michael T. Madigan; Deborah Jung; Marie Asao; Min Chen; Patrick C. Loughlin; Hao Pan; Yuankui Lin; Yaqiong Li; Jacob Shaw; Mindy Prado; Chris Sherman; Joseph Kuo-Hsiang Tang; Robert E. Blankenship; Tingting Zhao; Jeffrey W. Touchman; W. Sattley
Rhodoferax antarcticus is an Antarctic purple nonsulfur bacterium and the only characterized anoxygenic phototroph that grows best below 20 °C. We present here a high-quality draft genome of Rfx. antarcticus strain ANT.BRT, isolated from an Antarctic microbial mat. The circular chromosome (3.8 Mbp) of Rfx. antarcticus has a 59.1% guanine + cytosine (GC) content and contains 4036 open reading frames. In addition, the bacterium contains a sizable plasmid (198.6 kbp, 48.4% GC with 226 open reading frames) that comprises about 5% of the total genetic content. Surprisingly, genes encoding light-harvesting complexes 1 and 3 (LH1 and LH3), but not light-harvesting complex 2 (LH2), were identified in the photosynthesis gene cluster of the Rfx. antarcticus genome, a feature that is unique among purple phototrophs. Consistent with physiological studies that showed a strong capacity for nitrogen fixation in Rfx. antarcticus, a nitrogen fixation gene cluster encoding a molybdenum-type nitrogenase was present, but no alternative nitrogenases were identified despite the cold-active phenotype of this phototroph. Genes encoding two forms of ribulose 1,5-bisphosphate carboxylase/oxygenase were present in the Rfx. antarcticus genome, a feature that likely provides autotrophic flexibility under varying environmental conditions. Lastly, genes for assembly of both type IV pili and flagella are present, with the latter showing an unusual degree of clustering. This report represents the first genomic analysis of a psychrophilic anoxygenic phototroph and provides a glimpse of the genetic basis for maintaining a phototrophic lifestyle in a permanently cold, yet highly variable, environment.
Scientific Reports | 2015
Semion K. Saikin; Yadana Khin; Joonsuk Huh; Moataz Hannout; Yaya Wang; Farrokh Zare; Alán Aspuru-Guzik; Joseph Kuo-Hsiang Tang
Living organisms have to adjust to their surrounding in order to survive in stressful conditions. We study this mechanism in one of most primitive creatures – photosynthetic green sulfur bacteria. These bacteria absorb photons very efficiently using the chlorosome antenna complexes and perform photosynthesis in extreme low-light environments. How the chlorosomes in green sulfur bacteria are acclimated to the stressful light conditions, for instance, if the spectrum of light is not optimal for absorption, is unknown. Studying Chlorobaculum tepidum cultures with far-red to near-infrared light-emitting diodes, we found that these bacteria react to changes in energy flow by regulating the amount of light-absorbing pigments and the size of the chlorosomes. Surprisingly, our results indicate that the bacteria can survive in near-infrared lights capturing low-frequency photons by the intermediate units of the light-harvesting complex. The latter strategy may be used by the species recently found near hydrothermal vents in the Pacific Ocean.
Nature Communications | 2015
David M. Coles; Yanshen Yang; Yaya Wang; Robert A. Taylor; Semion K. Saikin; Alán Aspuru-Guzik; David G. Lidzey; Joseph Kuo-Hsiang Tang; Jason M. Smith
Corrigendum: Strong coupling between chlorosomes of photosynthetic bacteria and a confined optical cavity mode