Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph L. Alge is active.

Publication


Featured researches published by Joseph L. Alge.


Clinical Journal of The American Society of Nephrology | 2015

Biomarkers of AKI: A Review of Mechanistic Relevance and Potential Therapeutic Implications

Joseph L. Alge; John M. Arthur

AKI is a common clinical condition associated with a number of adverse outcomes. More timely diagnosis would allow for earlier intervention and could improve patient outcomes. The goal of early identification of AKI has been the primary impetus for AKI biomarker research, and has led to the discovery of numerous novel biomarkers. However, in addition to facilitating more timely intervention, AKI biomarkers can provide valuable insight into the molecular mechanisms of this complex and heterogeneous disease. Furthermore, AKI biomarkers could also function as molecular phenotyping tools that could be used to direct clinical intervention. This review highlights the major studies that have characterized the diagnostic and prognostic predictive power of these biomarkers. The mechanistic relevance of neutrophil gelatinase-associated lipocalin, kidney injury molecule 1, IL-18, liver-type fatty acid-binding protein, angiotensinogen, tissue inhibitor of metalloproteinase-2, and IGF-binding protein 7 to the pathogenesis and pathobiology of AKI is discussed, putting these biomarkers in the context of the progressive phases of AKI. A biomarker-integrated model of AKI is proposed, which summarizes the current state of knowledge regarding the roles of these biomarkers and the molecular and cellular biology of AKI.


Kidney International | 2014

Evaluation of 32 urine biomarkers to predict the progression of acute kidney injury after cardiac surgery

John M. Arthur; Elizabeth G. Hill; Joseph L. Alge; Evelyn C. Lewis; Benjamin A. Neely; Michael G. Janech; James A. Tumlin; Lakhmir S. Chawla; Andrew D. Shaw

Biomarkers for acute kidney injury (AKI) have been used to predict the progression of AKI but a systematic comparison of the prognostic ability of each biomarkers alone or in combination has not been performed. In order to assess this, we measured the concentration of 32 candidate biomarkers in the urine of 95 patients with AKIN stage 1 after cardiac surgery. Urine markers were divided into eight groups based on the putative pathophysiologic mechanism they reflect. We then compared the ability of the markers alone or in combination to predict the primary outcome of worsening AKI or death (23 patients) and the secondary outcome of AKIN stage 3 or death (13 patients). IL-18 was the best predictor of both outcomes (AUC of 0.74 and 0.89). L-FABP (AUC of 0.67 and 0.85), NGAL (AUC of 0.72 and 0.83) and KIM-1 (AUC of 0.73 and 0.81) were also good predictors. Correlation between most of the markers was generally related to their predictive ability but KIM-1 had a relatively weak correlation with other markers. The combination of IL-18 and KIM-1 had a very good predictive value with an AUC of 0.93 to predict AKIN 3 or death. Thus, combination of IL-18 and KIM-1 would result in improved identification of high risk patients for enrollment in clinical trials.


Clinical Journal of The American Society of Nephrology | 2013

Urinary Angiotensinogen and Risk of Severe AKI

Joseph L. Alge; Nithin Karakala; Benjamin A. Neely; Michael G. Janech; James A. Tumlin; Lakhmir S. Chawla; Andrew D. Shaw; John M. Arthur; SAKInet Investigators

BACKGROUND Biomarkers of AKI that can predict which patients will develop severe renal disease at the time of diagnosis will facilitate timely intervention in populations at risk of adverse outcomes. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Liquid chromatography/tandem mass spectrometry was used to identify 30 potential prognostic urinary biomarkers of severe AKI in a group of patients that developed AKI after cardiac surgery. Angiotensinogen had the best discriminative characteristics. Urinary angiotensinogen was subsequently measured by ELISA and its prognostic predictive power was verified in 97 patients who underwent cardiac surgery between August 1, 2008 and October 6, 2011. RESULTS The urine angiotensinogen/creatinine ratio (uAnCR) predicted worsening of AKI, Acute Kidney Injury Network (AKIN) stage 3, need for renal replacement therapy, discharge >7 days from sample collection, and composite outcomes of AKIN stage 2 or 3, AKIN stage 3 or death, and renal replacement therapy or death. The prognostic predictive power of uAnCR was improved when only patients classified as AKIN stage 1 at the time of urine sample collection (n=79) were used in the analysis, among whom it predicted development of stage 3 AKI or death with an area under the curve of 0.81. Finally, category free net reclassification improvement showed that the addition of uAnCR to a clinical model to predict worsening of AKI improved the predictive power. CONCLUSIONS Elevated uAnCR is associated with adverse outcomes in patients with AKI. These data are the first to demonstrate the utility of angiotensinogen as a prognostic biomarker of AKI after cardiac surgery.


Kidney International | 2013

Urine haptoglobin levels predict early renal functional decline in patients with type 2 diabetes

Nishant M. Bhensdadia; Kelly J. Hunt; Maria F. Lopes-Virella; J. Michael Tucker; Mohammad R. Mataria; Joseph L. Alge; Benjamin A. Neely; Michael G. Janech; John M. Arthur

Diabetic nephropathy is the leading cause of end stage renal disease. The urinary albumin to creatinine ratio is used as a predictor for the development of nephropathy but it is neither sensitive nor specific. Here we used liquid chromatography/mass spectrometry on urine of eight normoalbuminuric patients with type 2 diabetes from the VA Diabetes Trial to identify candidate markers for loss of renal function. Initial verification of 7 markers (agrin, haptoglobin, mannan-binding lectin serine protease 2, LAMP-2, angiotensinogen, NGAL and uromodulin) in the urine of an additional 30 patients showed that haptoglobin was the best predictor of early renal functional decline. We then measured this in the urine of 204 patients with type 2 diabetes who did not yet have significant kidney disease (eGFR stage 2 or better and an albumin to creatinine ratio less than 300 mg/g). In comparing the highest to lowest tertile, the odds ratio for having early renal function decline was 2.70 (CI 1.15, 6.32) using the haptoglobin to creatinine ratio compared to 2.50 (CI 1.14, 5.48) using the albumin to creatinine ratio after adjusting for treatment group and use of ACE inhibitors. Addition of the haptoglobin to creatinine ratio to a model using the albumin to creatinine ratio to predict early renal function decline resulted in improved predictive performance. Thus, the haptoglobin to creatinine ratio may be useful to predict patients with type 2 diabetes at risk of nephropathy prior to the development of macroalbuminuria or reduced GFR.


Kidney International | 2015

Urinary mitochondrial DNA is a biomarker of mitochondrial disruption and renal dysfunction in acute kidney injury

Ryan M. Whitaker; L. Jay Stallons; Joshua E. Kneff; Joseph L. Alge; Jennifer L. Harmon; Jennifer J. Rahn; John M. Arthur; Craig Beeson; Sherine L. Chan; Rick G. Schnellmann

Recent studies show the importance of mitochondrial dysfunction in the initiation and progression of acute kidney injury (AKI). However, no biomarkers exist linking renal injury to mitochondrial function and integrity. To this end, we evaluated urinary mitochondrial DNA (UmtDNA) as a biomarker of renal injury and function in humans with AKI following cardiac surgery. mtDNA was isolated from the urine of patients following cardiac surgery and quantified by qPCR. Patients were stratified into no AKI, stable AKI and progressive AKI groups based on Acute Kidney Injury Network (AKIN) staging. UmtDNA was elevated in progressive AKI patients, and was associated with progression of patients with AKI at collection to higher AKIN stages. To evaluate the relationship of UmtDNA to measures of renal mitochondrial integrity in AKI, mice were subjected to sham surgery or varying degrees of ischemia followed by 24 hours of reperfusion. UmtDNA increased in mice after 10-15 minutes of ischemia and positively correlated with ischemia time. Furthermore, UmtDNA was predictive of AKI in the mouse model. Finally, UmtDNA levels were negatively correlated with renal cortical mtDNA and mitochondrial gene expression. These translational studies demonstrate that UmtDNA is associated with recovery from AKI following cardiac surgery by serving as an indicator of mitochondrial integrity. Thus, UmtDNA may serve as valuable biomarker for the development of mitochondrial targeted therapies in AKI.


Clinical Journal of The American Society of Nephrology | 2013

Association of elevated urinary concentration of renin-angiotensin system components and severe AKI.

Joseph L. Alge; Nithin Karakala; Benjamin A. Neely; Michael G. Janech; James A. Tumlin; Lakhmir S. Chawla; Andrew D. Shaw; John M. Arthur

BACKGROUND Prognostic biomarkers that predict the severity of AKI at an early time point are needed. Urinary angiotensinogen was recently identified as a prognostic AKI biomarker. The study hypothesis is that urinary renin could also predict AKI severity and that in combination angiotensinogen and renin would be a strong predictor of prognosis at the time of AKI diagnosis. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS In this multicenter, retrospective cohort study, urine was obtained from 204 patients who developed AKI after cardiac surgery from August 2008 to June 1, 2012. All patients were classified as having Acute Kidney Injury Network (AKIN) stage 1 disease by serum creatinine criteria at the time of sample collection. Urine output was not used for staging. Urinary angiotensinogen and renin were measured, and the area under the receiver-operating characteristic curve (AUC) was used to test for prediction of progression to AKIN stage 3 or in-hospital 30-day mortality. These biomarkers were added stepwise to a clinical model, and improvement in prognostic predictive performance was evaluated by category free net reclassification improvement (cfNRI) and chi-squared automatic interaction detection (CHAID). RESULTS Both the urinary angiotensinogen-to-creatinine ratio (uAnCR; AUC, 0.75; 95% confidence interval [CI], 0.65 to 0.85) and the urinary renin-to-creatinine ratio (uRenCR; AUC, 0.70; 95% CI, 0.57 to 0.83) predicted AKIN stage 3 or death. Addition of uAnCR to a clinical model substantially improved prediction of the outcome (AUC, 0.85; cfNRI, 0.673), augmenting sensitivity and specificity. Further addition of uRenCR increased the sensitivity of the model (cfNRI(events), 0.44). CHAID produced a highly accurate model (AUC, 0.91) and identified the combination of uAnCR >337.89 ng/mg and uRenCR >893.41 pg/mg as the strongest predictors (positive predictive value, 80.4%; negative predictive value, 90.7%; accuracy, 90.2%). CONCLUSION The combination of urinary angiotensinogen and renin predicts progression to very severe disease in patients with early AKI after cardiac surgery.


Critical Care | 2013

Urinary angiotensinogen predicts adverse outcomes among acute kidney injury patients in the intensive care unit

Joseph L. Alge; Nithin Karakala; Benjamin A. Neely; Michael G. Janech; Juan Carlos Q. Velez; John M. Arthur

IntroductionAcute kidney injury (AKI) is commonly observed in the intensive care unit (ICU), where it can be caused by a variety of factors. The objective of this study was to evaluate the prognostic value of urinary angiotensinogen, a candidate prognostic AKI biomarker identified in post-cardiac surgery patients, in this heterogeneous population.MethodsUrinary angiotensinogen was measured by ELISA and corrected for urine creatinine in 45 patients who developed AKI in the ICU. Patients were grouped by AKI etiology, and the angiotensinogen-to-creatinine ratio (uAnCR) was compared among the groups using the Kruskal-Wallis test. The ability of uAnCR to predict the following endpoints was tested using the area under the ROC curve (AUC): the need for renal replacement therapy (RRT) or death, increased length of stay (defined as hospital discharge > 7 days or death ≤ 7 days from sample collection), and worsening AKI (defined as an increase in serum creatinine > 0.3 mg/dL after sample collection or RRT).ResultsuAnCR was significantly elevated in patients who met the composite outcome RRT or death (89.4 vs 25.4 ng/mg; P = 0.01), and it was a strong predictor of this outcome (AUC = 0.73). Patients with uAnCR values above the median for the cohort (55.21 ng/mg) had increased length of stay compared to patients with uAnCR ≤ 55.21 ng/mg (22 days vs 7 days after sample collection; P = 0.01). uAnCR was predictive of the outcome increased length of stay (AUC = 0.77). uAnCR was also a strong predictor of worsening of AKI (AUC = 0.77). The uAnCR of patients with pre-renal AKI was lower compared to patients with AKI of other causes (median uAnCR 11.3 vs 80.2 ng/mg; P = 0.02).ConclusionsElevated urinary angiotensinogen is associated with adverse events in AKI patients in the ICU. It could be used to identify high risk patients who would benefit from timely intervention that could improve their outcomes.


Journal of Pharmacology and Experimental Therapeutics | 2012

Diabetes-Induced Renal Injury in Rats Is Attenuated by Suramin

Midhun C. Korrapati; Brooke E. Shaner; Benjamin A. Neely; Joseph L. Alge; John M. Arthur; Rick G. Schnellmann

Progression of hyperglycemia-induced renal injury is a contributing factor for diabetic nephropathy (DN)-induced end-stage renal disease (ESRD), and development of novel therapeutic strategies that act early to prevent progression of DN and ESRD are important. We examined the efficacy and mechanism(s) of suramin on hyperglycemia-induced renal injury before development of overt histological damage. Two groups of male Sprague-Dawley rats received streptozotocin (STZ) and one group received saline. Three weeks later, one STZ group received suramin (10 mg/kg). All animals were euthanized 1 week later (4 weeks). Although there was a decrease in creatinine clearance between control and STZ ± suramin rats, there was no difference in creatinine clearance between STZ rats ± suramin intervention. Liquid chromatography-tandem mass spectroscopy-based analysis revealed increases in urinary proteins that are early indicators of DN (e.g., cystatin C, clusterin, cathepsin B, retinol binding protein 4, and peroxiredoxin-1) in the STZ group, which were blocked by suramin. Endothelial intracellular adhesion molecule-1 (ICAM-1) activation, leukocyte infiltration, and inflammation; transforming growth factor-β1 (TGF-β1) signaling; TGF-β1/SMAD-3-activated fibrogenic markers fibronectin-1, α-smooth muscle actin, and collagen 1A2; activation of proinflammatory and profibrotic transcription factors nuclear factor-κB (NF-κB) and signal transducer and activator of transcription factor-3 (STAT-3), respectively, were all increased in STZ rats and suramin blocked these changes. In conclusion, delayed administration of suramin attenuated 1) urinary markers of DN, 2) inflammation by blocking NF-κB activation and ICAM-1-mediated leukocyte infiltration, and 3) fibrosis by blocking STAT-3 and TGF-β1/SMAD-3 signaling. These results support the potential use of suramin in DN.


Archive | 2014

METHODS FOR DETECTING OR PREDICTING KIDNEY DISEASE

John M. Arthur; Michael G. Janech; Joseph L. Alge


Blood | 2010

Proteomic Analysis of Plasma Exosome-Associated Proteins Reveals That Differences In Kappa:Lambda Ratios Predict Severe Acute Graft-Versus-Host Disease Early After Allogeneic Hematopoietic Stem Cell Transplantation.

Joseph L. Alge; Michael G. Janech; John H. Schwacke; John M. Arthur; Luciano J. Costa

Collaboration


Dive into the Joseph L. Alge's collaboration.

Top Co-Authors

Avatar

John M. Arthur

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Michael G. Janech

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Benjamin A. Neely

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Andrew D. Shaw

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lakhmir S. Chawla

George Washington University

View shared research outputs
Top Co-Authors

Avatar

James A. Tumlin

University of Tennessee at Chattanooga

View shared research outputs
Top Co-Authors

Avatar

Nithin Karakala

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Luciano J. Costa

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Rick G. Schnellmann

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Brooke E. Shaner

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge