Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph M. Baker is active.

Publication


Featured researches published by Joseph M. Baker.


Proceedings of the National Academy of Sciences of the United States of America | 2014

The Evolution of Self-Control

Evan L. MacLean; Brian Hare; Charles L. Nunn; Elsa Addessi; Federica Amici; Rindy C. Anderson; Filippo Aureli; Joseph M. Baker; Amanda E. Bania; Allison M. Barnard; Neeltje J. Boogert; Elizabeth M. Brannon; Emily E. Bray; Joel Bray; Lauren J. N. Brent; Judith M. Burkart; Josep Call; Jessica F. Cantlon; Lucy G. Cheke; Nicola S. Clayton; Mikel M. Delgado; Louis DiVincenti; Kazuo Fujita; Esther Herrmann; Chihiro Hiramatsu; Lucia F. Jacobs; Kerry E. Jordan; Jennifer R. Laude; Kristin L. Leimgruber; Emily J. E. Messer

Significance Although scientists have identified surprising cognitive flexibility in animals and potentially unique features of human psychology, we know less about the selective forces that favor cognitive evolution, or the proximate biological mechanisms underlying this process. We tested 36 species in two problem-solving tasks measuring self-control and evaluated the leading hypotheses regarding how and why cognition evolves. Across species, differences in absolute (not relative) brain volume best predicted performance on these tasks. Within primates, dietary breadth also predicted cognitive performance, whereas social group size did not. These results suggest that increases in absolute brain size provided the biological foundation for evolutionary increases in self-control, and implicate species differences in feeding ecology as a potential selective pressure favoring these skills. Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.


Scientific Reports | 2016

Sex differences in neural and behavioral signatures of cooperation revealed by fNIRS hyperscanning.

Joseph M. Baker; Ning Liu; Xu Cui; Pascal Vrticka; Manish Saggar; S. M. Hadi Hosseini; Allan L. Reiss

Researchers from multiple fields have sought to understand how sex moderates human social behavior. While over 50 years of research has revealed differences in cooperation behavior of males and females, the underlying neural correlates of these sex differences have not been explained. A missing and fundamental element of this puzzle is an understanding of how the sex composition of an interacting dyad influences the brain and behavior during cooperation. Using fNIRS-based hyperscanning in 111 same- and mixed-sex dyads, we identified significant behavioral and neural sex-related differences in association with a computer-based cooperation task. Dyads containing at least one male demonstrated significantly higher behavioral performance than female/female dyads. Individual males and females showed significant activation in the right frontopolar and right inferior prefrontal cortices, although this activation was greater in females compared to males. Female/female dyad’s exhibited significant inter-brain coherence within the right temporal cortex, while significant coherence in male/male dyads occurred in the right inferior prefrontal cortex. Significant coherence was not observed in mixed-sex dyads. Finally, for same-sex dyads only, task-related inter-brain coherence was positively correlated with cooperation task performance. Our results highlight multiple important and previously undetected influences of sex on concurrent neural and behavioral signatures of cooperation.


Frontiers in Psychology | 2012

A shared system of representation governing quantity discrimination in canids.

Joseph M. Baker; Justice Morath; Katrina S. Rodzon; Kerry E. Jordan

One way to investigate the evolution of cognition is to compare the abilities of phylogenetically related species. The domestic dog (Canis lupus familiaris), for example, still shares cognitive abilities with the coyote (Canis latrans). Both of these canids possess the ability to make psychophysical “less/more” discriminations of food based on quantity. Like many other species including humans, this ability is mediated by Weber’s Law: discrimination of continuous quantities is dependent on the ratio between the two quantities. As two simultaneously presented quantities of food become more similar, choice of the large or small option becomes random in both dogs and coyotes. It remains unknown, however, whether these closely related species within the same family – one domesticated, and one wild – make such quantitative comparisons with comparable accuracy. Has domestication honed or diminished this quantitative ability? Might different selective and ecological pressures facing coyotes drive them to be more or less able to accurately represent and discriminate food quantity than domesticated dogs? This study is an effort to elucidate this question concerning the evolution of non-verbal quantitative cognition. Here, we tested the quantitative discrimination ability of 16 domesticated dogs. Each animal was given nine trials in which two different quantities of food were simultaneously displayed to them. The domesticated dogs’ performance on this task was then compared directly to the data from 16 coyotes’ performance on this same task reported by Baker et al. (2011). The quantitative discrimination abilities between the two species were strikingly similar. Domesticated dogs demonstrated similar quantitative sensitivity as coyotes, suggesting that domestication may not have significantly altered the psychophysical discrimination abilities of canids. Instead, this study provides further evidence for similar non-verbal quantitative abilities across multiple species.


Journal of Education | 2013

A study comparing virtual manipulatives with other instructional treatments in third- and fourth-grade classrooms

Patricia S. Moyer-Packenham; Joseph M. Baker; Arla Westenskow; K. Anderson; Jessica F. Shumway; Kati Rodzon; Kerry E. Jordan

The study reported here examined virtual manipulatives as an instructional treatment in 17 third- and fourth-grade classrooms. Students were randomly assigned to two treatment groups: texts and physical manipulatives (PM), and virtual manipulatives (VM). Results revealed no significant differences in achievement between the treatments. Additional results showed that objective ability predicted fraction achievement; virtual manipulative use can be modulated by test question type (e.g., symbolic vs. pictorial); percentage of class time using representations differed between VM and PM classrooms; and percentage of class time spent using representation types differed, potentially providing differential opportunities to learn.


Frontiers in Psychology | 2013

The impact of emotion on numerosity estimation

Joseph M. Baker; Katrina S. Rodzon; Kerry E. Jordan

Both time and numerosity can be represented continuously as analog properties whose discrimination conforms to Weber’s Law, suggesting that the two properties may be represented similarly. Recent research suggests that the representation of time is influenced by the presence of emotional stimuli. If time and numerosity share a common cognitive representation, it follows that a similar relationship may exist between emotional stimuli and the representation of numerosity. Here, we provide evidence that emotional stimuli significantly affect humans’ estimation of visual numerosity. During a numerical bisection task, enumeration of emotional stimuli (angry faces) was more accurate compared to enumeration of neutrally valenced stimuli (neutral faces), demonstrating that emotional stimuli affect humans’ visual representation of numerosity as previously demonstrated for time. These results inform and broaden our understanding of the effect of negative emotional stimuli on psychophysical discriminations of quantity.


Scientific Reports | 2017

Neural, physiological, and behavioral correlates of visuomotor cognitive load

S. M. Hadi Hosseini; Jennifer L. Bruno; Joseph M. Baker; Andrew Gundran; Lene K. Harbott; J. Christian Gerdes; Allan L. Reiss

Visuomotor ability is quite crucial for everyday functioning, particularly in driving and sports. While there is accumulating evidence regarding neural correlates of visuomotor transformation, less is known about the brain regions that accommodate visuomotor mapping under different cognitive demands. We concurrently measured cortical activity and pupillary response, using functional near infrared spectroscopy (fNIRS) and eye-tracking glasses, to examine the neural systems linked to pupil dilation under varying cognitive demands. Twenty-three healthy adults performed two sessions of a navigation task, in which the cognitive load was manipulated by either reversing the visuomotor mapping or increasing the speed of the moving object. We identified a region in the right superior parietal lobule that responded to both types of visuomotor load and its activity was associated with larger pupillary response and better performance in the task. Our multimodal analyses suggest that activity in this region arises from the need for increased attentional effort and alertness for visuomotor control and is an ideal candidate for objective measurement of visuomotor cognitive load. Our data extend previous findings connecting changes in pupil diameter to neural activity under varying cognitive demand and have important implications for examining brain-behavior associations in real-world tasks such as driving and sports.


Developmental Medicine & Child Neurology | 2016

A meta-analysis of math performance in Turner syndrome

Joseph M. Baker; Allan L. Reiss

Studies investigating the relationship between Turner syndrome and math learning disability have used a wide variation of tasks designed to test various aspects of mathematical competencies. Although these studies have revealed much about the math deficits common to Turner syndrome, their diversity makes comparisons between individual studies difficult. As a result, the consistency of outcomes among these diverse measures remains unknown. The overarching aim of this review is to provide a systematic meta‐analysis of the differences in math and number performance between females with Turner syndrome and age‐matched neurotypical peers.


Mathematical Cognition and Learning | 2015

The Influence of Multisensory Cues on Representation of Quantity in Children

Joseph M. Baker; Kerry E. Jordan

Abstract We broadly discuss the influence of multiple cues on humans’ psychophysical representation of number. We first review extant research investigating the limitations of abstract numerical representations, as well as more recent findings that demonstrate enhanced numerical discrimination following multisensory stimulation. We also discuss possible environmental and biological factors that underlie humans’ propensity to perceptually benefit from multisensory stimulation, and close with discussion of unanswered questions regarding the beneficial effects of redundant multisensory stimulation. Emergent data from our own lab is used as a backdrop to discuss many of these unknowns.


Frontiers in Behavioral Neuroscience | 2016

A Proof of Concept Study of Function-based Statistical Analysis of fNIRS Data: Syntax Comprehension in Children with Specific Language Impairment Compared To Typically-Developing Controls

Guifang Fu; Nicholas J. A. Wan; Joseph M. Baker; James W. Montgomery; Julia L. Evans; Ronald B. Gillam

Functional near infrared spectroscopy (fNIRS) is a neuroimaging technology that enables investigators to indirectly monitor brain activity in vivo through relative changes in the concentration of oxygenated and deoxygenated hemoglobin. One of the key features of fNIRS is its superior temporal resolution, with dense measurements over very short periods of time (100 ms increments). Unfortunately, most statistical analysis approaches in the existing literature have not fully utilized the high temporal resolution of fNIRS. For example, many analysis procedures are based on linearity assumptions that only extract partial information, thereby neglecting the overall dynamic trends in fNIRS trajectories. The main goal of this article is to assess the ability of a functional data analysis (FDA) approach for detecting significant differences in hemodynamic responses recorded by fNIRS. Children with and without SLI wore two, 3 × 5 fNIRS caps situated over the bilateral parasylvian areas as they completed a language comprehension task. FDA was used to decompose the high dimensional hemodynamic curves into the mean function and a few eigenfunctions to represent the overall trend and variation structures over time. Compared to the most popular GLM, we did not assume any parametric structure and let the data speak for itself. This analysis identified significant differences between the case and control groups in the oxygenated hemodynamic mean trends in the bilateral inferior frontal and left inferior posterior parietal brain regions. We also detected significant group differences in the deoxygenated hemodynamic mean trends in the right inferior posterior parietal cortex and left temporal parietal junction. These findings, using dramatically different approaches, experimental designs, data sets, and foci, were consistent with several other reports, confirming group differences in the importance of these two areas for syntax comprehension. The proposed FDA was consistent with the temporal characteristics of fNIRS, thus providing an alternative methodology for fNIRS analyses.


PLOS ONE | 2018

fNIRS measurement of cortical activation and functional connectivity during a visuospatial working memory task

Joseph M. Baker; Jennifer L. Bruno; Andrew Gundran; S. M. Hadi Hosseini; Allan L. Reiss

Demands on visuospatial working memory are a ubiquitous part of everyday life. As such, significant efforts have been made to understand how the brain responds to these demands in real-world environments. Multiple brain imaging studies have highlighted a fronto-parietal cortical network that underlies visuospatial working memory, is modulated by cognitive load, and that appears to respond uniquely to encoding versus retrieval components. Furthermore, multiple studies have identified functional connectivity in regions of the fronto-parietal network during working memory tasks. Together, these findings have helped outline important aspects of the neural architecture that underlies visuospatial working memory. Here, we provide results from the first fNIRS-based investigation of fronto-parietal signatures of cortical activation and functional connectivity during a computer-based visuospatial working memory task. Our results indicate that the local maxima of cortical activation and functional coherence do not necessarily overlap spatially, and that cortical activation is significantly more susceptible to task-specific demands compared to functional connectivity. These results highlight important and novel information regarding neurotypical signatures of cortical activation and functional connectivity during visuospatial working memory. Our findings also demonstrate the utility of fNIRS for interrogating these cognitive processes.

Collaboration


Dive into the Joseph M. Baker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen I. Tucker

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge