Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph M. Walker is active.

Publication


Featured researches published by Joseph M. Walker.


Journal of Biological Chemistry | 2002

The APG8/12-activating Enzyme APG7 Is Required for Proper Nutrient Recycling and Senescence in Arabidopsis thaliana

Jed H. Doelling; Joseph M. Walker; Eric M. Friedman; Allison R. Thompson; Richard D. Vierstra

The vacuole/lysosome serves an important recycling function during starvation and senescence in eukaryotes via a process called autophagy. Here bulk cytosolic constituents and organelles become sequestered in specialized autophagic vesicles, which then deliver their cargo to the vacuole for degradation. In yeasts, genetic screens have identified two novel post-translational modification pathways remarkably similar to ubiquitination that are required for autophagy. From searches of the Arabidopsisgenome, we have identified gene families encoding proteins related to both the APG8 and −12 polypeptide tags and orthologs for all components required for their attachment. A single APG7gene encodes the ATP-dependent activating enzyme that initiates both conjugation pathways. Phenotypic analysis of anAPG7 disruption indicates that it is not essential for normal growth and development in Arabidopsis. However, theapg7-1 mutant is hypersensitive to nutrient limiting conditions and displays premature leaf senescence. mRNAs for both APG7 and APG8 preferentially accumulate as leaves senesce, suggesting that both conjugation pathways are up-regulated during the senescence syndrome. These findings show that the APG8/12 conjugation pathways have been conserved in plants and may have important roles in autophagic recycling, especially during situations that require substantial nitrogen and carbon mobilization.


The Plant Cell | 2007

The Arabidopsis EIN3 Binding F-Box Proteins EBF1 and EBF2 Have Distinct but Overlapping Roles in Ethylene Signaling

Brad M. Binder; Joseph M. Walker; Jennifer M. Gagne; Thomas J. Emborg; Georg Hemmann; Anthony B. Bleecker; Richard D. Vierstra

Ethylene signaling in Arabidopsis thaliana converges on the ETHYLENE-INSENSITIVE3 (EIN3)/EIN3-Like (EIL) transcription factors to induce various responses. EIN3 BINDING F-BOX1 (EBF1) and EBF2 were recently shown to function in ethylene perception by regulating EIN3/EIL turnover. In the absence of ethylene, EIN3 and possibly other EIL proteins are targeted for ubiquitination and subsequent degradation by Cullin 1–based E3 complexes containing EBF1 and 2. Ethylene appears to block this ubiquitination, allowing EIN3/EIL levels to rise and mediate ethylene signaling. Through analysis of mutant combinations affecting accumulation of EBF1, EBF2, EIN3, and EIL1, we show that EIN3 and EIL1 are the main targets of EBF1/2. Kinetic analyses of hypocotyl growth inhibition in response to ethylene and growth recovery after removal of the hormone revealed that EBF1 and 2 have temporally distinct but overlapping roles in modulating ethylene perception. Whereas EBF1 plays the main role in air and during the initial phase of signaling, EBF2 plays a more prominent role during the latter stages of the response and the resumption of growth following ethylene removal. Through their coordinated control of EIN3/EIL1 levels, EBF1 and EBF2 fine-tune ethylene responses by repressing signaling in the absence of the hormone, dampening signaling at high hormone concentrations, and promoting a more rapid recovery after ethylene levels dissipate.


Biochemical Journal | 2005

Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors

Baruch Karniol; Jeremiah R. Wagner; Joseph M. Walker; Richard D. Vierstra

Phys (phytochromes) are a superfamily of photochromic photoreceptors that employ a bilin-type chromophore to sense red and far-red light. Although originally thought to be restricted to plants, accumulating genetic and genomic analyses now indicate that they are also prevalent among micro-organisms. By a combination of phylogenetic and biochemical studies, we have expanded the Phy superfamily and organized its members into distinct functional clades which include the phys (plant Phys), BphPs (bacteriophytochromes), Cphs (cyanobacterial Phys), Fphs (fungal Phys) and a collection of Phy-like sequences. All contain a signature GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA) domain, which houses the bilin lyase activity. A PHY domain (uppercase letters are used to denote the PHY domain specifically), which helps stabilize the Pfr form (far-red-light-absorbing form of Phy), is downstream of the GAF region in all but the Phy-like sequences. The phy, Cph, BphP and Fph families also include a PLD [N-terminal PAS (Per/Arnt/Sim)-like domain] upstream of the GAF domain. Site-directed mutagenesis of conserved residues within the GAF and PLD motifs supports their importance in chromophore binding and/or spectral activity. In agreement with Lamparter, Carrascal, Michael, Martinez, Rottwinkel and Abian [(2004) Biochemistry 43, 3659-3669], a conserved cysteine within the PLD of several BphPs was found to be necessary for binding the chromophore via the C-3 vinyl side chain on the bilin A ring. Phy-type sequences were also discovered in the actinobacterium Kineococcus radiotolerans and collections of microorganisms obtained from marine and extremely acidic environments, thus expanding further the range of these photoreceptors. Based on their organization and distribution, the evolution of the Phy superfamily into distinct photoreceptor types is proposed.


Journal of Biological Chemistry | 2008

Mutational Analysis of Deinococcus radiodurans Bacteriophytochrome Reveals Key Amino Acids Necessary for the Photochromicity and Proton Exchange Cycle of Phytochromes

Jeremiah R. Wagner; Junrui Zhang; David von Stetten; Mina Günther; Daniel H. Murgida; Maria Andrea Mroginski; Joseph M. Walker; Katrina T. Forest; Peter Hildebrandt; Richard D. Vierstra

The ability of phytochromes (Phy) to act as photointerconvertible light switches in plants and microorganisms depends on key interactions between the bilin chromophore and the apoprotein that promote bilin attachment and photointerconversion between the spectrally distinct red light-absorbing Pr conformer and far red light-absorbing Pfr conformer. Using structurally guided site-directed mutagenesis combined with several spectroscopic methods, we examined the roles of conserved amino acids within the bilin-binding domain of Deinococcus radiodurans bacteriophytochrome with respect to chromophore ligation and Pr/Pfr photoconversion. Incorporation of biliverdin IXα (BV), its structure in the Pr state, and its ability to photoisomerize to the first photocycle intermediate are insensitive to most single mutations, implying that these properties are robust with respect to small structural/electrostatic alterations in the binding pocket. In contrast, photoconversion to Pfr is highly sensitive to the chromophore environment. Many of the variants form spectrally bleached Meta-type intermediates in red light that do not relax to Pfr. Particularly important are Asp-207 and His-260, which are invariant within the Phy superfamily and participate in a unique hydrogen bond matrix involving the A, B, and C pyrrole ring nitrogens of BV and their associated pyrrole water. Resonance Raman spectroscopy demonstrates that substitutions of these residues disrupt the Pr to Pfr protonation cycle of BV with the chromophore locked in a deprotonated Meta-Rc-like photoconversion intermediate after red light irradiation. Collectively, the data show that a number of contacts contribute to the unique photochromicity of Phy-type photoreceptors. These include residues that fix the bilin in the pocket, coordinate the pyrrole water, and possibly promote the proton exchange cycle during photoconversion.


Plant Journal | 2009

Tandem affinity purification and mass spectrometric analysis of ubiquitylated proteins in Arabidopsis

Scott A. Saracco; Maria Hansson; Mark Scalf; Joseph M. Walker; Lloyd M. Smith; Richard D. Vierstra

Protein ubiquitylation is a central regulatory mechanism that controls numerous processes in plants, including hormone signaling, developmental progression, responses to biotic and abiotic challenges, protein trafficking and chromatin structure. Despite data implicating thousands of plant proteins as targets, so far only a few have been conclusively shown to be ubiquitylated in planta. Here we describe a method to isolate ubiquitin-protein conjugates from Arabidopsis that exploits a stable transgenic line expressing a synthetic poly-UBQ gene encoding ubiquitin (Ub) monomers N-terminally tagged with hexahistidine. Following sequential enrichment by Ub-affinity and nickel chelate-affinity chromatography, the ubiquitylated proteins were trypsinized, separated by two-dimensional liquid chromatography, and analyzed by mass spectrometry. Our list of 54 non-redundant targets, expressed by as many as 90 possible isoforms, included those predicted by genetic studies to be ubiquitylated in plants (EIN3 and JAZ6) or shown to be ubiquitylated in other eukaryotes (ribosomal subunits, elongation factor 1alpha, histone H1, HSP70 and CDC48), as well as candidates whose control by the Ub/26S proteasome system is not yet appreciated. Ub attachment site(s) were resolved for a subset of these proteins, but surprisingly little sequence consensus was detected, implying that specific residues surrounding the modified lysine are not important determinants for ubiquitylation. We also identified six of the seven available lysine residues on Ub itself as Ub attachment sites, together with evidence for a branched mixed-linkage chain, suggesting that the topologies of Ub chains can be highly complex in plants. Taken together, our method provides a widely applicable strategy to define ubiquitylation in any tissue of intact plants exposed to a wide range of conditions.


The Plant Cell | 1993

Carboxy-terminal deletion analysis of oat phytochrome A reveals the presence of separate domains required for structure and biological activity.

Joel R. Cherry; David Hondred; Joseph M. Walker; Janis M. Keller; Howard P. Hershey; Richard D. Vierstra

A series of seven carboxy-terminal deletion mutants of oat phytochrome A were stably expressed in transgenic tobacco to localize phytochrome domains involved in chromophore attachment, spectral integrity, photoreversibility between the red light (Pr)- and far-red light (Pfr)-absorbing forms, dimerization, and biological activity. Amino acids necessary for chromophore attachment in vivo were localized to the amino-terminal 398 residues because mutant proteins this small had covalently bound chromophore. Deletion mutants from the carboxy terminus to residue 653 were spectrally indistinguishable from the full-length chromoprotein. In contrast, further truncation to residue 399 resulted in a chromoprotein with a bleached Pfr absorbance spectrum, Pr and Pfr absorbance maxima shifted toward shorter wavelengths, and reduced Pfr to Pr phototransformation efficiency. Thus, residues between 399 ad 652 are required for spectral integrity but are not essential for chromophore attachment. The sequence(s) between residues 919 and 1093 appears to be necessary for dimerization. Carboxy-terminal mutants containing this region behaved as dimers under nondenaturing conditions in vitro, whereas truncations without this region behaved as monomers. None of the plants expressing high levels of deletion mutants lacking the 35 carboxy-terminal amino acids displayed the light-exaggerated phenotype characteristic of plants expressing biologically active phytochrome A, even when the truncated phytochromes were expressed at levels 6- to 15-fold greater than that effective for the full-length chromoprotein. Collectively, these data show that the phytochrome protein contains several separable carboxy-terminal domains required for structure/function and identify a domain within 35 residues of the carboxy terminus that is critical for the biological activity of the photoreceptor in vivo.


Plant Physiology | 2006

Multiple Heme Oxygenase Family Members Contribute to the Biosynthesis of the Phytochrome Chromophore in Arabidopsis

Thomas J. Emborg; Joseph M. Walker; Bosl Noh; Richard D. Vierstra

The oxidative cleavage of heme by heme oxygenases (HOs) to form biliverdin IXα (BV) is the committed step in the biosynthesis of the phytochrome (phy) chromophore and thus essential for proper photomorphogenesis in plants. Arabidopsis (Arabidopsis thaliana) contains four possible HO genes (HY1, HO2–4). Genetic analysis of the HY1 locus showed previously that it is the major source of BV with hy1 mutant plants displaying long hypocotyls and decreased chlorophyll accumulation consistent with a substantial deficiency in photochemically active phys. More recent analysis of HO2 suggested that it also plays a role in phy assembly and photomorphogenesis but the ho2 mutant phenotype is more subtle than that of hy1 mutants. Here, we define the functions of HO3 and HO4 in Arabidopsis. Like HY1, the HO3 and HO4 proteins have the capacity to synthesize BV from heme. Through a phenotypic analysis of T-DNA insertion mutants affecting HO3 and HO4 in combination with mutants affecting HY1 or HO2, we demonstrate that both of the encoded proteins also have roles in photomorphogenesis, especially in the absence of HY1. Disruption of HO3 and HO4 in the hy1 background further desensitizes seedlings to red and far-red light and accelerates flowering time, with the triple mutant strongly resembling seedlings deficient in the synthesis of multiple phy apoproteins. The hy1/ho3/ho4 mutant can be rescued phenotypically and for the accumulation of holo-phy by feeding seedlings BV. Taken together, we conclude that multiple members of the Arabidopsis HO family are important for synthesizing the bilin chromophore used to assemble photochemically active phys.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome.

E. Sethe Burgie; Adam N. Bussell; Joseph M. Walker; Katarzyna Dubiel; Richard D. Vierstra

Significance Much of plant growth and development is regulated by the phytochrome (Phy) family of photoreceptors. We present an atomic perspective of plant Phy signaling through a crystal structure of the photosensing module as Pr from Arabidopsis PhyB assembled with its native chromophore phytochromobilin. Although its overall architecture and chromophore/protein contacts are reminiscent of bacterial relatives, significant structural differences are seen within the prominent knot, hairpin and helical spine features. Subsequent mutational analyses lend support to a toggle model for how Phys reversibly switch between their Pr and Pfr end states. This 3D structure along with the identified suite of photochemical variants should accelerate the rational redesign of Phy signaling for improved crop performance and optogenetic application. Many aspects of plant photomorphogenesis are controlled by the phytochrome (Phy) family of bilin-containing photoreceptors that detect red and far-red light by photointerconversion between a dark-adapted Pr state and a photoactivated Pfr state. Whereas 3D models of prokaryotic Phys are available, models of their plant counterparts have remained elusive. Here, we present the crystal structure of the photosensing module (PSM) from a seed plant Phy in the Pr state using the PhyB isoform from Arabidopsis thaliana. The PhyB PSM crystallized as a head-to-head dimer with strong structural homology to its bacterial relatives, including a 5(Z)syn, 10(Z)syn, 15(Z)anti configuration of the phytochromobilin chromophore buried within the cGMP phosphodiesterase/adenylyl cyclase/FhlA (GAF) domain, and a well-ordered hairpin protruding from the Phy-specific domain toward the bilin pocket. However, its Per/Arnt/Sim (PAS) domain, knot region, and helical spine show distinct structural differences potentially important to signaling. Included is an elongated helical spine, an extended β-sheet connecting the GAF domain and hairpin stem, and unique interactions between the region upstream of the PAS domain knot and the bilin A and B pyrrole rings. Comparisons of this structure with those from bacterial Phys combined with mutagenic studies support a toggle model for photoconversion that engages multiple features within the PSM to stabilize the Pr and Pfr end states after rotation of the D pyrrole ring. Taken together, this Arabidopsis PhyB structure should enable molecular insights into plant Phy signaling and provide an essential scaffold to redesign their activities for agricultural benefit and as optogenetic reagents.


Planta | 2006

Light-regulated overexpression of an Arabidopsis phytochrome A gene in rice alters plant architecture and increases grain yield

Ajay K. Garg; Ruairidh J. H. Sawers; Haiyang Wang; Ju-Kon Kim; Joseph M. Walker; Thomas P. Brutnell; Mandayam V. Parthasarathy; Richard D. Vierstra; Ray Wu

The phytochromes are a family of red/far-red light absorbing photoreceptors that control plant developmental and metabolic processes in response to changes in the light environment. We report here the overexpression of Arabidopsis thaliana PHYTOCHROME A (PHYA) gene in a commercially important indica rice variety (Oryza sativa L. Pusa Basmati-1). The expression of the transgene was driven by the light-regulated and tissue-specific rice rbcS promoter. Several independent homozygous sixth generation (T5) transgenic lines were characterized and shown to accumulate relatively high levels of PHYA protein in the light. Under both far-red and red light, PHYA-overexpressing lines showed inhibition of the coleoptile extension in comparison to non-transgenic seedlings. Furthermore, compared with non-transgenic rice plants, mature transgenic plants showed significant reduction in plant height, internode length and internode diameter (including differences in cell size and number), and produced an increased number of panicles per plant. Under greenhouse conditions, rice grain yield was 6–21% higher in three PHYA-overexpressing lines than in non-transgenic plants. These results demonstrate the potential of manipulating light signal-transduction pathways to minimize the problems of lodging in basmati/aromatic rice and to enhance grain productivity.


The Plant Cell | 2009

The RPN5 Subunit of the 26s Proteasome Is Essential for Gametogenesis, Sporophyte Development, and Complex Assembly in Arabidopsis

Adam J. Book; Jan Smalle; Kwang-Hee Lee; Peizhen Yang; Joseph M. Walker; Sarah Casper; James H. Holmes; Laura A. Russo; Zachri W. Buzzinotti; Pablo D. Jenik; Richard D. Vierstra

The 26S proteasome is an essential multicatalytic protease complex that degrades a wide range of intracellular proteins, especially those modified with ubiquitin. Arabidopsis thaliana and other plants use pairs of genes to encode most of the core subunits, with both of the isoforms often incorporated into the mature complex. Here, we show that the gene pair encoding the regulatory particle non-ATPase subunit (RPN5) has a unique role in proteasome function and Arabidopsis development. Homozygous rpn5a rpn5b mutants could not be generated due to a defect in male gametogenesis. While single rpn5b mutants appear wild-type, single rpn5a mutants display a host of morphogenic defects, including abnormal embryogenesis, partially deetiolated development in the dark, a severely dwarfed phenotype when grown in the light, and infertility. Proteasome complexes missing RPN5a are less stable in vitro, suggesting that some of the rpn5a defects are caused by altered complex integrity. The rpn5a phenotype could be rescued by expression of either RPN5a or RPN5b, indicating functional redundancy. However, abnormal phenotypes generated by overexpression implied that paralog-specific functions also exist. Collectively, the data point to a specific role for RPN5 in the plant 26S proteasome and suggest that its two paralogous genes in Arabidopsis have both redundant and unique roles in development.

Collaboration


Dive into the Joseph M. Walker's collaboration.

Top Co-Authors

Avatar

Richard D. Vierstra

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Adam N. Bussell

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David Hondred

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jan Smalle

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Joel R. Cherry

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Adam J. Book

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Baruch Karniol

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

E. Sethe Burgie

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jed H. Doelling

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jennifer M. Gagne

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge